Friday, December 23, 2016

Apple Watch First Impressions

 ...from a former Pebble user


When Pebble announced their acquisition by FitBit, I was cautious about the future of the product: I backed the original Pebble on Kickstarter, as well as the Pebble Steel, Time Steel and finally, Time 2 when the opportunities presented themselves. But then recent things like having a total reset screwing up all my settings (and needing to do a factory reset to get things back) and a limited lifetime (and no more warranty support) for the existing units, I decided to look elsewhere for a good smartwatch.

As a longtime iPhone/iPad user I'd looked at the specs for Apple Watch when it was first released, and between the significant cost difference from the Pebble (like 4x more expensive, depending on the edition and band choices) and significant hardware limitations (Single-day battery life? Really? Not water resistant?), the sale of Pebble was making my smartwatch options pretty bleak.

However, the recently released Series 2 from Apple addressed 2 of the 3 biggest faults I had with the platform (nothing is going to address the cost problem: this is Apple we're talking about, and all of its options are boutique-priced) by adding significant strides to battery life along with 50M water resistance.

So I pulled the trigger and yesterday was able to take delivery of a 42mm Stainless Steel with Milanese Loop band in Space Black.
42mm Apple Watch Series 2 in Space Black
with Milanese Loop band
If you're interested in an un-boxing, you can search elsewhere. Suffice it to say that, in typical Apple fashion, the watch was simultaneously beautifully and over-packaged; a fair expectation for an $800 timepiece, whether it comes from Apple or not, but the amount of material waste from the packaging hails back to when Apple thought they were competing in the luxury timepiece market rather than the fitness wearables market. They really, really could've gone with less.

I started by placing the watch on the charging disc for a few hours to make sure it was well charged, then I went through the pairing process. Unlike Pebble, the Watch doesn't use two different Bluetooth profiles (one standard and one low-energy), and pairing with my iPhone 6s running iOS 10.2 was smooth and less error-prone compared to my usual experience with Pebble pairing. If there's one thing to be said for getting the two devices from the same manufacturer, it's the effortless user experience with pairing.

Before purchasing, I visited a local Apple store to get a feel for my choices in cases and bands. I selected the 42mm over the 38mm because of the larger display and my old eyes. The stainless steel case is a heftier feel over aluminium (or ceramic), which I definitely prefer, and there was a noticeable difference between the 38mm and 42mm as well, solidifying my choice of that size. Lighter watches tend to slide around to the underside of my wrist, while heavier ones seem to stay in place on the top. And if I have to deal at all with the watch on the underside of my wrist, the sapphire crystal of the stainless steel & ceramic cases was a must. I also prefer the heavier link band, but between the $500 premium and its "butterfly clasp" (which I hate), there was no way I was going with the Apple link band. The Milanese felt "weighty" enough in comparison to the link band, and its "infinite adjustability" had some appeal as well.

Once I had the watch paired and on my wrist, I started digging into the features I'd come accustomed to on the Pebble. Probably the biggest surprise was the dearth of watch face choices: unlike the Pebble ecosystem, with thousands of watch faces to choose from—everything from utilitarian designs to homages to Star Trek to the silly "Drunk O'Clock" face—the handful of faces available in the Watch ecosystem was a big surprise.

Worse, while all the Watch faces are customizable to some degree, all of them have the limitation of disallowing the customization of "time" itself. The face I'm most accustomed to on the Pebble—YWeather by David Rincon—is nearly reproducible on the Watch using the "Modular" face, but the options—or "Complications" as Apple terms them—aren't very flexible and make "time" a less-prominent feature in the face. Which, in my opinion, sort of defeats the purpose in a watch face.
Apple Watch
"Modular"
Pebble
"YWeather"

If I could just move the Time to the center section and make it more prominent, while moving the date to the upper-right, it'd be good enough...

Notifications are also very different on the Apple Watch; the most significant seems to be the suppression of all notifications when the phone is actively being used, which I'm extremely unhappy with. Among other things, it means that I'm not getting notifications when I've got the phone plugged into power and showing a route in Waze. Even when the phone is locked & screen is off, I'm finding that notifications I usually received on the Pebble are missing/silent on the watch: I've yet to get a notification from Slack, which is one of the busiest apps on my phone after Mail itself.
Yes, I've made sure that things like "cover to mute" is disabled and "mirror phone" is set for pretty much all of the integrations on the watch, but the only type of notification that I get seems to be Messages and Calendar.

Application integration is nice for many apps I have on the phone; being able to quickly raise/lower the garage door using GarageIO on the watch instead of the phone is nice, as is checking the home alarm. However, it does seem that some watch app integrations require the phone-based app to be running (or at least "backgrounded") in order for the watch component to function. It's not consistent, so I'm still trying to figure out which ones need to be running in order to work.

The blob of apps in the App Layout sucks, however. While I have the ability to move apps around to change their proximity to the "central" Clock app, the fact that there are so many that I'd just as soon never see—even after telling Watch to uninstall the integration—is mind-boggling when you consider the minimalist design elements used everywhere else in all Apple products.

At any rate, I'm still getting used to this thing, but from my perspective, I like parts of it, but other parts are still inferior to Pebble

Tuesday, November 8, 2016

Virtual SAN Cache Device upgrade

Replacing/Upgrading the cache+buffer device in VSAN

Dilemma: I've got a VSAN cluster at home, and I decided to switch from single diskgroups-per-host to dual to give myself a bit more availability as well as additional buffer capacity (with all-flash, there's not much need for a read cache).

My scenario has some unique challenges for this transformation. First, although I already have the new buffer device to head the new disk group, I don't actually have all the new capacity disks that I'll need for the final configuration: I'll need to use some of the existing capacity disks if I want to get the second disk group going before I have the additional capacity devices. Second, I have insufficient capacity in the remainder of the VSAN datastore to perform a full evacuation while still maintaining policy compliance (which is sort of why I'm looking to add capacity in addition to splitting the one disk group up).


The nominal way to perform my transformation is:
  1. Put the host into maintenance mode, evacuating all registered VMs
  2. Delete the disk group, evacuating the data so all VMs remain storage policy-compliant.
  3. Add the new device
  4. Rebuild disk group(s)
I already took a maintenance outage during the last patch updates and added my new cache+buffer device to each host, so "Step 3" is already completed.
And then I hit on something: While removing the buffer device from a diskgroup will cause the decommissioning of the entire disk group, individual capacity devices can be removed without upsetting more than the objects being stored on that device alone. I have sufficient capacity in the remainder of the disk group—not to mention on the other hosts in the cluster—to operate on individual capacity elements.

So, here's my alternative process:

  1. Remove one capacity device from its disk group with full migration

  2. Add the capacity device to the new disk group.

It takes longer because I'm doing the evacuation and reconfiguration "in series" rather than "in parallel," but it leaves me with more active & nominal capacity+availability than doing it on an entire diskgroup at once.

My hosts will ultimately have two disk groups, but they'll break one "rule of thumb" by being internally asymmetric: My buffer devices are 400GB and 800GB NVMe cards, respectively, so when I'm fully populated with ten (10) 512GB capacity disks in each host, four (4) will be grouped with the smaller and six (6) will be grouped with the larger. When you keep in mind that Virtual SAN won't use more than 600GB of a cache+buffer device regardless of its size, it actually has some internal symmetry: each capacity disk will be (roughly) associated with 100GB of buffer, for a ~5:1 buffer:capacity ratio.

CLI alternative

Although this entire process can be performed using the Web Client, an alternative is to write a CLI script. The commands needed are all in the esxcli storage or vsan namespaces; combined with some shell/PowerShell scripting, it is conceivable that one could:
  • Identify storage devices.
    esxcli storage core device list
  • Identify any existing disk group, cache+buffer and capacity devices
    esxcli vsan storage list.
  •  Remove one of the capacity disks with migration
    esxcli vsan storage remove -d <device> -m evacuateAllData
  • Create a new disk group using an available flash device from the core device list as the new group's cache+buffer device, and the recently evacuated device as the capacity device
    esxcli vsan storage add -s <cache+buffer device> -d <device>
  • Loop through the remaining capacity devices, first removing then adding them to the new disk group. The esxcli vsan storage remove command is blocking when run from the ESXi console, so your script should wait for full evacuation and availability before the next step in the script is executed.

Thursday, October 13, 2016

Adding floppy for PVSCSI drivers when creating a VM in vCenter Web Client

Someone asked in a private slack channel if it was "just him" or can you really not add a floppy image when creating a VM using the Web Client. This is relevant any time you want to build a VM using the PVSCSI drivers so they'll always be available, even if VMware Tools is uninstalled.
The answer—at least with v6.0U2—is "no."
In this scenario, the vmimages folder won't expand; it offers the "arrowhead" showing there is content to be discovered within, but when you select it, you get no content...

Fortunately, there's a workaround: if you go ahead and save the new VM (without powering on) and then edit it, modifying the source for the floppy image, the vmimages folder will correctly expand and populate, allowing you to select one.

UPDATE: It turns out we were talking about two different Web Clients! My assumption was that we were referring to the vCenter Web Client, while the person asking was referring to the new(ish) Host Web Client.

The defect and workaround as I've documented it only apply to the vCenter Web Client. The Host Web Client will not behave correctly even in the workaround; this is a solid defect. There are other workarounds—use the C# client, copy the IMG file to an accessible datastore, etc.—but none are as good as the defect being eliminated in the first place.

Friday, February 26, 2016

NTFS, dedupe, and the "large files" conundrum.

Microsoft did the world a huge favor when they added the deduplication feature to NTFS with the release of Windows Server 2012. We can have a discussion outside of this context on whether inline or post-process dedupe would have been better (the NTFS implementation is post-process), but the end result is something that seems to have minimal practical impact on performance but provides huge benefits in storage consumption, especially on those massive file servers that collect files like a shelf collects dust.

On the underside, the dedupe engine collects the duplicate blocks and hides them under the hidden "System Volume Information" folder and leaves pointers in the main MFT. You can do a disk size scan and see very little on-disk capacity taken by a given folder, yet a ginormous amount of disk is being consumed in that hidden folder.


See that little slice of color on the far left? That's the stub of files that aren't sitting in the restricted dedupe store. The statistics tell a different story:


200GB of non-scannable data (in the restricted store) versus 510MB stored in the "regular" MFT space. Together they comprise some 140K files in 9K folders, and the net action of dedupe is saving over 50GB in capacity on that volume:


The implementation is fairly straightforward, and I've found few instances where it didn't save the client a bunch of pain.

Except when used as a backup target.

Personally, I though this was the perfect use case—and it is, but with the caveats discussed herein—because backup tools like Veeam can perform deduplication within a backup job, but job-to-job deduplication isn't in the cards. Moving the backup repository to a deduplicating volume would save a ton of space, giving me either space to store more data or more restore points for existing backups.

Unfortunately, I ran into issues with it after running backups for a couple of weeks. Everything would run swimmingly for a while, then suddenly backups would fail with filesystem errors. I'd wipe the backup chain and start again, only to have it happen again. Fed up, I started searching for answers...

Interestingly, the errors I was receiving (The requested operation could not be completed due to a file system limitation.) go all the way back to limitations on NTFS without deduplication, and the early assertions by Microsoft that "defragmentation software isn't needed with NTFS because it protects itself from fragmentation." Anyone else remember that gem?!? Well, the Diskeeper folks were able to prove that NTFS volumes do, in fact, become fragmented, and a cottage industry of competing companies popped up to create defrag software. Microsoft finally relented and not only agreed that the problem can exist on NTFS, but they licensed a "lite" version of Diskeeper and included it in every version of Windows since Windows 2000. They also went so far as to add additional API calls to the filesystem and device manager so that defragger software could better operate in a safe manner than "working around" the previous limitations.

I digress...

The errors and the underlying limitation have to do with the way NTFS handles file fragmentation. It has special hooks to readily locate multiple fragments across the disk (which is, in part, why Microsoft argued that a fragmented NTFS volume wouldn't suffer the same sort of performance penalty that an equivalently-fragmented FAT volume would experience), but the data structures to hold that information is a fixed resource. Once volume fragmentation reaches a certain level, the data structures are exhausted and I/O for the affected file is doomed. The fix? Run a defragger on the volume to free up those data structures (every fragment consumes essentially one entry in the table, so the fewer fragments that exist, the fewer table resources are consumed, irrespective of total file size) and things start working again.

Enter NTFS deduplication

Remember that previous description of how the dedupe engine will take duplicate blocks from the volume—whether they're within a single file or across multiple—and put it in the System Volume Information folder, then leave a pointer in the main MFT to let multiple files (or the same file) access to that block?

Well, we just deliberately engineered a metric crapton (yes, that's a technical description) of intentional fragmentation on the volume. So when individual deduplicated files grow beyond a certain size (personal evidence says it's ~200GB, but posts I've found here and there say it's as little as 100GB while MS says it's 500GB https://support.microsoft.com/en-us/kb/2891967) you can't do anything with the file. Worse, defrag tools can't fix it, because this fragmentation isn't something that the algorithms can "grab"; the only real fix—other than throwing away the files and starting over—is to disable dedupe. And if you're near the edge of capacity due to the benefit of dedupe, even that's no option: rehydrating the file will blow past your capacity. Lose-lose.

Luckily, Microsoft identified the issue and gave us a tool when building volumes intended for deduplication: "large files" flag in the format command. Unfortunately, as you might guess when referring to "format," it's destructive. The structures that are laid down on the physical media when formatting a volume are immutable in this case; only an evacuation and reformat fixes the problem.

Given that restriction, wouldn't it be helpful to know if your existing volumes support large files (ie extreme fragmentation) before you enable deduplication? Sure it would!

The filesystem command "fsutil" is your friend. From an administrative command prompt, run the following command + arguments (this is an informational argument that makes no changes to the volume, but requires administrative access to read the system information):

fsutil fsinfo ntfsinfo <drive letter>



Notice the Bytes Per FileRecord Segment value? On a volume that does not support high levels of fragmentation, you'll see the default value of 1024. You'll want to reformat that volume with the "/L" argument before enabling dedupe for big backup files on that bad boy. And no, the ability to do that format argument is not available in the GUI when creating a new volume; you've got to use the command line.

What does it look like after you've reformatted it? Here you go:


The Bytes Per FileRecord Segment value jumps up to the new value of 4096.

You'll still want to adhere to Microsoft's dedupe best practices (https://msdn.microsoft.com/en-us/library/windows/desktop/hh769303(v=vs.85).aspx), and if you're reformatting it anyway, by all means make sure you do it with the 64K cluster size so you don't run into any brick walls if you expect to expand the volume in the future. Note that the fsutil command also shows the volume's cluster size (Bytes per Cluster) if you're wanting to check that, too.

Special thanks to fellow vExpert Frank Buechsel, who introduced me to using fsutil for this enquiry.

Saturday, December 19, 2015

Veeam 9 and StoreOnce Catalyst

HPE has offered their StoreOnce deduplication platform as a free, 1TB virtual appliance for some time (the appliance is also available for licensed 5TB and 10TB variants). As a competitor for other dedupe backup targets, it offers similar protocols and features: virtual tape library, SMB (although they persist in calling it CIFS), NFS...and a proprietary protocol branded as Catalyst.
StoreOnce protocols
Catalyst is part of a unified protocol from HPE that ties together several different platforms, allowing "dedupe once, replicate anywhere" functionality. Like competing protocols, Catalyst also provides some performance improvements for both reads and writes as compared to "vanilla" file protocols.

Veeam has supported the StoreOnce platform since v8, but only through SMB (err... CIFS?) protocol. With the immanent release of Veeam 9—with support for Catalyst—I decided to give the free product a try and see how it works with v8, v9, and what the upgrade/migration process looks like.

HPE offers the StoreOnce VSA in several variants (ESXi stand-alone, vCenter-managed and Hyper-V) and is very easy to deploy, configure and use through its integrated browser-based admin tool. Adding a storage pool is as simple as attaching a 1TB virtual disk to the VM (ideally, on a secondary HBA) before initialization.

Creating SMB shares is trivial, but if the appliance is configured to use Active Directory authentication, share access must be configured through the Windows Server Manager MMC snap-in; while functional, it's about as cumbersome as one might think. StoreOnce owners would be well-served if HPE added permission/access functionality into the administrative console. Using local authentication eliminates this annoyance, and is possibly the better answer for a dedicated backup appliance...but I digress.

StoreOnce fileshare configuration
Irrespective of the authentication method configured on the appliance, local authentication is the only option for Catalyst stores, which are also trivial to create & configure. In practice, the data stored in a Catalyst store is not visible or accessible via file or VTL protocols—and vice-versa; at least one competing platform of which I'm familiar doesn't have this restriction. This functional distinction does make it more difficult to migrate stored data from one protocol to another; among other possible scenarios, this is particularly germane when an existing StoreOnce+Veeam user wishes to upgrade from v8 to v9 (presuming StoreOnce is also running a firmware version that is supported for Veeam's Catalyst integration) and has a significant amount of data in the file share "side" of the StoreOnce. A secondary effect is that there is no way to utilize the Catalyst store without a Catalyst-compatible software product: in my case, ingest is only possible using Veeam, whether it's one of the backup job functions or the in-console file manager.

Veeam 9 file manager
As of this writing, I have no process for performing the data migration from File to Catalyst without first transferring the data to an external storage platform that can be natively managed by Veeam's "Files" console. Anyone upgrading from Veeam 8 to Veeam 9 will see the existing "native" StoreOnce repositories converted to SMB repositories; as a side effect, file-level management of the StoreOnce share is lost. Any new Catalyst stores can be managed through the Veeam console, but the loss of file-management for the "share side" means there is no direct transfer possible. Data must be moved twice in order migrate from File to Catalyst; competing platforms that provide simultaneous access via file & "proprietary" protocols allow migration through simple repository rescans.

Administrative negatives aside, the StoreOnce platform does a nice job of optimizing storage use with good dedupe ratios. Prior to implementing StoreOnce (with Veeam 8, so only SMB access), I was using Veeam-native compression & deduplication on a Linux-based NAS device. With no other changes to the backup files, migrating them from the non-dedupe NAS to StoreOnce resulted in an immediate 2x deduplication ratio; modifying the Veeam jobs to dedupe appliance-aware settings (eg, no compression at storage) saw additional gains in dedupe efficiency. After upgrading to Veeam 9 (as a member of a partner organization, I have early to the RTM build)—and going through the time-consuming process of migrating the folders from File to Catalyst—my current status is approaching 5x, giving me the feeling that dedupe performance may be superior on the Catalyst stores as compared to File shares. As far as I'm concerned, this is already pretty impressive dedupe performance (given that the majority of the job files are still using sub-optimal settings) and I'm looking forward to increasing performance as the job files cycle from the old settings to dedupe appliance-optimized as retention points are aged out.

Appliance performance during simultaneous read, write operations
StoreOnce appliance performance will be variable, based not only on the configuration of the VM (vCPU, memory) but also on the performance of the underlying storage platform; users of existing StoreOnce physical appliances will have a fixed level of performance based on the platform/model. Users of the virtual StoreOnce appliance can inject additional performance into the system by upgrading the underlying storage (not to mention more CPU or memory, as dictated by the capacity of the appliance) to a higher performance tier.

Note: Veeam's deduplication appliance support—which is required for Catalyst—is only available with Enterprise (or Enterprise Plus) licensing. The 60-day trial license includes all Enterprise Plus features and can be used in conjunction with the free 1TB StoreOnce appliance license to evaluate this functionality in your environment, whether you are a current Veeam licensee or not.

Update

With the official release of Veeam B&R v9, Catalyst and StoreOnce are now available to those of you holding the Enterprise B&R licenses. I will caution you, however, to use a different method of converting from shares to Catalyst than I used. Moving the files does work, but it's not a good solution: you don't get to take advantage of the per-VM backup files that is a feature of v9 (if a backup starts with a monolithic file, it will continue to use it; only creating a new backup—or completely deleting the existing files—will allow per-VM files to be created. This is the preferred format for Catalyst, and the dedupe engine will work more efficiently with per-VM files than it will with monolithic files; I'm sure there's a technical reason for it, but I can vouch for it in practice. Prior to switching to per-VM files, my entire backup footprint, even after cycling through the monolithic files to eliminate dedupe-unfriendly elements like job-file compression, consumed over 1TB of raw storage with a dedupe ratio that never actually reached 5:1. After discarding all those jobs and starting fresh with cloned jobs and per-VM files, I now have all of my backups & restore points on a single 1TB appliance with room to spare and a dedupe ratio currently above 5:1.


I'm still fine-tuning, but I'm very pleased with the solution.

Monday, November 23, 2015

Long-term self-signed certs

While I'm a big proponent of using an enterprise-class certificate authority—either based on internal offline root/online issuing or public CAs—there are some instances when using a self-signed cert fits the bill. Unfortunately, most of the tools for creating a self-signed cert have defaults that result in less-than-stellar results: the digest algorithm is sha1, the cert is likely to have a 1024-bit key, and the extensions that define the cert for server and/or client authentication are missing.

With a ton of references discoverable on The Interwebz, I spent a couple of hours trying to figure out how to generate a self-signed with the following characteristics:

  • 2048-bit key
  • sha256 digest
  • 10-year certificate life (because, duh, I don't want to do this every year)
  • Accepted Use: server auth, client auth
It took pulling pieces from several different resources, documented herein:

Required Software

OpenSSL (command-line software)
Text editor (to create the config file for the cert)

Steps

  1. Create a text file that specifies the "innards" of the cert:
    [req]
    default_bits = 2048
    encrypt_key = no
    distinguished_name = req_dn
    prompt = no

    [ req_dn ]
    CN={replace with server fqdn}
    OU={replace with department}
    O={replace with company name}
    L={replace with city name}
    ST={replace with state name}
    C={replace with 2-letter country code}

    [ exts ]
    extendedKeyUsage = serverAuth,clientAuth
  2. Run the following openssl command (all one line) to create the new private key & certificate:
    openssl req -x509 -config {replace with name of config file created above} -extensions "exts" -sha256 -nodes -days 3652 -newkey rsa:2048 -keyout host.rsa -out host.cer
  3. Run the following openssl command to bundle the key & cert together in a bundle that can be imported into Windows:
    openssl pkcs12 -export -out host.pfx -inkey host.rsa -in host.cer

What's happening

The text file sets up a number of configuration items that you'd either be unable to specify at all (the extensions) or would have to manually input during creation (the distinguished name details).

The request in the second step creates a 2048-bit private key (host.rsa) and a self-signed certificate (host.cer) with a 10-year lifetime (3652 days) with the necessary usage flags and SHA256 digest.

Friday, June 5, 2015

Resurrecting a TomTom XL

I'm a longtime fan of TomTom GPS devices, and thanks to my friends over at w00t, I've bought quite a few over the last score years, gifting some and reselling others.

While my most reliable mapping/routing service (recently) has been Waze on my iPhone, I've had an older TomTom XL·S 310/340 that I've kept in the company car, because sometimes Waze isn't always available or accurate—more because of Verizon CDMA limitations than anything else, but that's a different story—and having a dedicated device is super convenient.

I've been doing a bunch of travel in that company car, and the out-of-date map on the TomTom has become a bit of an annoyance, so unlike the XL I have for the personal car with lifetime map updates, I had a conundrum: do I purchase a new map ($45), subscribe to a year of updates ($49), punt and live with just the iPhone, or purchase a new device for home and move the one with lifetime maps to the company car and let the XL·S go to the electronics graveyard?

Because the device had been working flawlessly otherwise—with the exception of essentially zero battery life—I went ahead and selected the Map Update service.

After attaching the device to my PC and downloading several updates to the TomTom Home management application, the purchased map update was immediately available as an installable option. This old unit only had 2GB of local storage, so the old map had to be deleted before installing the new update; I bravely went ahead with the update process.

And after a goodly while, received errors that Home was unable to copy a file to the device, so it aborted the process. The management app itself suggested disconnecting, reconnecting and retrying the update, so I did that.

A common sight: errors writing to internal storage
Unfortunately, repeating the process didn't help: it might error out at a different file, but over and over, it would still fail.

As it happens, however, when the TomTom is attached to the PC, it shows up as a removable USB drive. When interacting with the Home application, it can create backup copies of the filesystem on the PC, and by comparing the data on the properly-updating home XL, I was able to make some assumptions about the XL·S filesystem. Instead of relying on the Home application to properly transfer the map to the device, I let Windows do it, copying the map data from the downloaded ZIP file to the removable device that was the TomTom's internal storage.

One problem: I was missing a file from the map download.

TomTom uses DRM to keep non-subscribers from using their maps. I was fine with that: as a subscriber, I should have rights to use those maps. However, some searching on the interwebz didn't net me any solutions. Luckily, I also thought to look on my PC where Home was running; there was a second download that had an "activation.zip" file. Inspecting it, I found a .dct file; a quick google search informed me that this was my DRM key.

By putting the map and the DRM key on the TomTom manually, I now had a map that was usable by the device.

Or did I?

While I knew I could operate the device and use the map via the Home management app, the device refused to boot independently. Again, I used my google-fu and discovered that I should be able to wipe the local storage and get Home to reinstall the boot image and application software. And after wiping, but prior to doing the install, I performed Windows filesystem checks to make sure the TomTom local storage was functional and free of errors.

The Home tool worked as documented, but once again, after trying to add the map update, copy/install errors became my bane. I tried again to use Windows to copy the map update and DRM file, and lo... success! Not only would the device operate with the Home app, but it worked when independently powered.

So that's the trick:

  1. Wipe the TomTom local storage. Completely.
  2. Let Home reinstall the boot image and mapping application. This could require several restarts of the device, including hard resets (press and hold the power button until the TomTom logo appears and the drum sound is played).
  3. Extract the PC-based map to the TomTom local storage.
  4. Extract the .dct file to the map folder on the TomTom local storage.
  5. Restart the TomTom.
Update:
The device was working perfectly, so I continued with adding the MapShare corrections, and as the image above shows, I ran into another file transfer error. Following this error, the device refused to restart properly, getting stuck at the indemnity acknowledgement screen and spontaneously restarting. I reconnected the device and removed the most recent files from the map folder—the ones that didn't match the files received in the map update or the DRM file—and restarted the device, and it recovered nicely.

Update 2:
Before anyone asks: the .dct file that's the DRM key is specifically created by TomTom for my use on this device alone and is unusable on any other device, with any other map. The device serial number and map thumbprint are both part of the decryption key for DRM, so even if I didn't care about TomTom's IP rights and the possibility of litigation for it (which I actually do on both accounts), sharing the DRM file with the world wouldn't help anyone. So no, I will not share any of the files I received from TomTom in this update process.

Wednesday, June 3, 2015

Maximum NTFS Volume Expansion

A peer recently had an issue when working on a client system: After adding a second shelf of SAS-attached drives to a physical Windows Storage Server and doubling the available capacity of the environment from ~20TB to ~40TB, he was unable to extend the existing NTFS volume after extending the SAS array group.

The error was "The volume cannot be extended because the number of clusters will exceed the maximum number of clusters supported by the filesystem."
The original volume was reportedly formatted "using the defaults," which under most circumstances would mean it was using 4K clusters. Why wouldn't it allow extending the volume?

Because NTFS (as currently implemented) has a cluster limit of 232-1 clusters per volume.

When you "do the math," that cluster limit does impose some hard limits on the maximum size of the NTFS volume, irrespective of the actual drive space that is available for the volume. And trying to use tricks like dynamic disks and software RAID won't help: those tricks modify the underlying disk structure, not the NTFS filesystem that "rides" on top of it.

Max NTFS Volume by Cluster Size
cluster
size (B)
Bytes KB MB GB TB
512 2,199,023,255,040 2,147,483,648 2,097,152 2,048 2
1024 4,398,046,510,080 4,294,967,295 4,194,304 4,096 4
2048 8,796,093,020,160 8,589,934,590 8,388,608 8,192 8
4096 17,592,186,040,320 17,179,869,180 16,777,216 16,384 16
8192 35,184,372,080,640 34,359,738,360 33,554,432 32,768 32
16384 70,368,744,161,280 68,719,476,720 67,108,864 65,536 64
32768 140,737,488,322,560 137,438,953,440 134,217,728 131,072 128
65536 281,474,976,645,120 274,877,906,880 268,435,456 262,144 256

We knew that we had a functioning 20TB volume, so we verified my theory that the volume was actually formatted with 8K clusters (the smallest size that would support 20TB) using DISKPART's FILESYSTEM command. Sure enough: 8192 was the cluster size.

We gave the client several options for addressing the issue, including the purchase of software that could "live adjust" the cluster sizing. In the end, the client chose the "migrate->reformat->migrate" option, and while it took a long time to perform (20TB is a lot of data!), it was successful.

Tuesday, April 7, 2015

Don't say "Customer"

customer
one that purchases a commodity or service
According to the above definition from Webster's, it's quite likely that you deal with people that can be labelled with that term. Even those of you who are not in specific sales roles may have used the term to refer to those you serve (eg, "the internal customer").

Good or bad, that term has a certain "transactional" connotation to it; the retail model is pretty clear: a person goes to a store, buys a product or receives a service, then leaves. You don't have a relationship with the clerk running the point-of-sale system; you get your stuff and go. Transactional.

For gasoline purchases and groceries, this may be the right model and the right term. But is that the right model for you in IT? Consider it instead from the reverse point of view:

What is your relationship with your barber/hair stylist (Some of you reading this might not use one: your tonsorial needs may be non-existent or you may be able to handle things for yourself. But I bet you can probably remember a time when it was a regular requirement...)? Do you have a certain place to which you always return? When you go there, is there a particular person to whom you look (or schedule or wait) because you get a consistently good cut, or because the conversation is more pleasant, or some other (in)tangible benefit? Do you like the personal service that comes with being known by your first name? Would you have a hard time switching to a different barber/stylist because of the trust you've given to your current one? That is the sort of relationship you should seek to have with your...clients.
client
  1. one that is under the protection of another : dependent
  2. a: a person who engages the professional advice or services of another
    b: customer
While a client can be a form of customer, the superior definitions imply a more intimate relationship between the two parties. Dependency (used in the primary definition) can have both negative and positive connotations, but in this context, we're essentially talking about repeat business. This is what we're after, both as provider and consumer: as a provider, it keeps me in business and employed; as a consumer, I can either add the process of determining "from whom" as the same time I'm trying to figure out the "what" for my need. As a client, you put a certain level of trust into the relationship: you trust that your provider will have your interests at heart; that you won't be taken advantage of; that you can rely on the quality of the work.

That, then, pushes a certain level of responsibility on the provider. Be(come) the trusted adviser by not abusing the trust. Provide good advice. Provide repeatably good service and/or products. Own your mistakes and gently guide your client away from making them on their own. This is how one treats his/her clients—especially if the goal is to keep them!

If you're not already in this frame of mind, I challenge you to make this shift in a simple yet subtle way: Even if you're in the "business of selling widgets," even if you're running a convenience store selling gasoline and snack food, train yourself to stop using the word "customer" and start using the word "client" instead. Words have power; they convey ideas and have implications. Changing the use of that one word should change the way you look at the people you serve; when your outlook changes, the way you act and react in the relationship should follow. All of your clientele may not perceive the difference, either overtly or subconsciously; some still want to be "merely" customers, ignoring the relationship and simply needing a widget or two. Making this adjustment won't "fix" that relationship, but neither should it affect your ability to be there to serve them when they choose you. But the shoppers, the fence-sitters? With this one subtle change, you could influence them in a way that sends them into your care with more frequency.

Disclaimer: I currently work for a value-added reseller—a "VAR" in industry parlance—but have also spent a long time as a purchaser of products and services. I believe this concept is valid in either case.

Sunday, March 8, 2015

Fix vShield Manager after modifying vSphere VDS uplinks

If you've been following my posts about upgrading my home lab, you know that I removed the add-in 1Gbps NICs and consolidated the motherboard-based 1Gbps NICs on one DVS (distributed virtual switch) in order to add 10Gbps support to my hosts. In that process, I not only rearranged the physical NICs for the uplinks, I also updated the uplink names in order to keep my environment self-documenting.

Things pretty much went as planned, but I didn't expect vShield Manager (vSM) to choke on the changes: when updating the uplink names for the DVS that provided the VXLAN port group, I expected vSM to recognize the changes and handle creation of new VXLAN networks without issue. I was wrong.

The first symptom that I had an issue was the inability of vCloud Director (vCD) to create a new Organizational Network on a deployed Edge device:
So: something is off with the teaming policy. Time to look at vSM to determine whether vCD is sending a bad request to vSM, or if vSM itself is the source of the issue. The easiest way to check is to manually create a new network in vSM; if it succeeds, vCD is sending a bad request, otherwise I need to troubleshoot vSM--and possibly vCenter, too.
Boom: the problem is reproduced even for a test directly in vSM. Time to verify the teaming in the base portgroup in vCenter.
Oops. I hadn't updated the portgroup for VXLAN after moving the uplinks around, although I had done so for the other portgroups on the DVS.
Unfortunately, updating the portgroup to use all the available uplinks didn't help. However, in the process, I discovered an unexpected error in vCenter itself:
vSM was making an API call to vCenter that included one of the old uplink names, one which no longer existed on the DVS. To test the theory, I added a couple of additional uplink ports to the DVS and renamed one to match the missing port. It worked, but not as expected:
vSM was able to send a proper API call to vCenter, but the portgroup had sub-optimal uplink settings: of the two active uplinks, only one had an actual, physical uplink associated with it. This was not a redundant connection, even though it looked like it.

Time to restart vSM to get it to re-read the vCenter DVS config, right? Wrong. Even with a restart & re-entering the vCenter credentials, the state persisted.

At this point, my Google-fu failed me: no useful hits on a variety of search terms. Time to hit the VMware Community Forums with a question. Luckily, I received a promising answer in just a day or two.

I learned that one can use the REST API for vSM to reconfigure it, which can get it back in line with reality. But how do you work with arbitrary REST calls? It turns out, there's a REST client plug-in for Firefox, written to troubleshoot and debug REST APIs. It works a treat:
  1. Set up the client for authenticated headers
  2. Retrieve the DVS configuration as an XML blob in the body of a GET call
  3. Modify the XML blob so that it has the correct properties
  4. PUT the revised XML blob back to vSM.
Voila! Everything works.

Specifics:
1) Use an Authenticated GET on the switches API
2) Using the objectId of the desired DVS, get the specific switch data
3) Update the XML blob with the correct uplink names
4) PUT the revised XML blob
As soon as this blob was accepted with a 200 OK response, I re-ran my test in vSM: success! vCD was also able to successfully create the desired portgroup, too.

Key takeaways:
  1. REST Client for Firefox is awesome for arbitrary interaction with a REST API
  2. Sometimes, the only way to accomplish a goal is through the API; a GUI or CLI command may not exist to fix your problem.
  3. This particular fix allows you to arbitrarily rename your uplinks without having to reset the vShield Manager database and completely reinstall it to get VXLAN working again.

Monday, February 23, 2015

Planning for vSphere 6: VMCA considerations

With the immanent release of vSphere 6, I've been doing prep work for upgrades and new installs. There's a lot of information out there (just check out the vSphere 6 Link-O-Rama at Eric Siebert's vSphere Land for an idea of the breadth & depth of what's already written), but not as much as I'd like to make good decisions in order to future-proof the setup.

I'm sure I join lots of VMware admins in looking forward to the new features in vSphere 6—long-distance vMotion, cross-datacenter & cross-vCenter vMotion, multi-vCPU fault tolerance (FT), etc.—but along with these features come some foundational changes in the way vSphere management & security are architected.

Hopefully, you've already heard about the new PSC (Platform Services Controller), the functional descendant of the SSO service introduced in vSphere 5.1. SSO still exists as a component of the PSC, and the PSC can be co-installed ("embedded") on the same system as vCenter, or it can be independent. Like SSO on vSphere 5.5, the PSC has its own internal, dedicated database which it replicates with peer nodes, similar to what we've come to know and expect from Microsoft Active Directory.

This replication feature not only helps for geographically-distributed enterprises—allowing a single security authority for multiple datacenters—but high availability in a single datacenter through the use of 2 (or more) PSCs behind a load balancer. Note the emphasis on the load balancer: you will end up with the abstraction of the PSC with a DNS name pointing at an IP address on your load balancing solution, rather than the name/IP of a PSC itself.
PSC in load-balanced HA configuration

This delegation means you must plan ahead of time for using load balancing; it's really not the sort of thing that you can "shim" into the environment after implementing a single PSC.

Joining SSO in the PSC "black box" are several old and some brand new services: identity management, licensing...and a new Certificate Authority, aka VMCA (not to be confused with vCMA, the vCenter Mobile Access fling) .

It's that last item—the Certificate Authority—that should make you very nervous in your planning for vSphere 6. The documentation so far indicates that you have upwards of four different modes for your CA implementation that are independent of your PSC implementation choices:
  • Root (the default). Source of all certs for dependent services, this CA's public key/cert must be distributed and placed in your trusted CA store.
  • Intermediate. Source of all certs for dependent services, but the CA itself gets its trust from a parent CA, which in turn must have its public key/cert distributed. In the case of corporate/Enterprise CA/PKI infrastructure, this will already be in place and will be my go-to configuration.
  • None/External-only. All services receive their certs from a different CA all together. This model is equivalent to removing all the self-signed certificates in pre-6 and replacing them with signed certificates. With the proliferation of services, each using its own certificate, this model is becoming untenable.
  • Hybrid. In the hybrid model, the VMCA provides certificates to services that provide internal communication (either service-to-service or client-to-service) while public CA-signed certs are used in the specific places where 3rd-party clients will interact. In this model, the VMCA may act as either root or intermediate CA.
Confused? Just wait: it gets more complicated...

Migrating from one model to another will have risks & difficulties associated with it. The default installer will set you up with a root CA; you will have the option to make it an intermediate at time of install. As near as I can tell from the available documentation, you will need to reinstall the PSC if you start with it as a root CA and decide you want it instead to be an intermediate (or vice-versa). This is consistent with other CA types (eg, Microsoft Windows), so there's no surprise there; however, it's not clear what other replicated services will be impacted when trying to swap CA modes, as it will require previously-issued certificates to be revoked and new certificates to be issued.

You can switch some or all of the certificates it manages with 3rd-party (or Enterprise) signed certs, but once you do, you will have to deal with re-issue & expiration on your own. I can't find anything documenting whether this is handled gracefully & automatically with VMCA-signed certs & services, similar to the centralized/automated certificate management that Windows enjoys in an Enterprise CA environment.

There isn't any documentation on switching from 3rd-party (or Enterprise) back to a VMCA-signed certificate. Presumably, it'll be some CLI-based witchcraft...if it's allowed at all.

Finally, keep in mind that DNS names factor heavily into certificate trust. Successfully changing name and/or IP address of an SSO server—depending on which was used for service registration—can be challenging enough. Doing the same with a system that is also a certificate authority will be doubly so.

So: what's the architect going to do?

For small, non-complex environments, I'm going to recommend what VMware and other bloggers recommend: stick with the single, combined PSC and vCenter server. Use the VCSA (vCenter Server Appliance) to save on the Windows license if you must, but I personally still prefer the Windows version: I'm still far more comfortable with managing the Windows OS environment & database than I am with Linux. Additionally, you're going to want Update Manager—still a Windows service—so I find it easier to just keep them all together.


This also suggests using the VMCA as a root CA, and I'll stick with that recommendation unless you have an Enterprise CA already. If you have the Enterprise CA, why not make it an intermediate? At a minimum, you'll would eliminate the need for yet another root certificate to distribute. More importantly, however, is that it's vastly easier to replace an intermediate CA—even through the pain of re-issuing certificates—than a root CA.

What constitutes small, non-complex? For starters, any environment that exists with one—and only one—vCenter server. You can look up the maximums yourself, but we're talking about a single datacenter with one or two clusters of hosts, so less than 65 hosts for vSphere 5.5; in practice, we're really talking about environments with 20 or fewer hosts, but I have seen larger ones that would still meet this category because—other than basic guest management (eg, HA & DRS)—they aren't really using vCenter for anything. If it were to die a horrible death and be redeployed, the business might not even notice!

Even if you have a small environment by those standards, however, "complex" enters the equation as soon as you implement a feature that is significantly dependent on vCenter services: Distributed Virtual Switch, Horizon View non-persistent desktops, vRealize Automation, etc. At this point, you now need vCenter to be alive & well pretty much all the time.

In these environments, I was already counseling the use of a full SQL database instance, not SQL Express with all of its limitations. Even when you're inside the "performance bubble" for that RDBMS, there are a host of other administrative features you must do without that can compromise uptime. With vSphere 6, I'm continuing the recommendation, but taking it a step further: use AlwaysOn Availability Groups for that database as soon as it's certified. It's far easier to resurrect a cratered vCenter server with a valid copy of the database than rebuilding everything from scratch; I know VMware wants us all to treat the VCSA as this tidy little "black box," but I've already been on troubleshooting calls where major rework was required because no maintenance of the internal PosgreSQL database was ever done, and the whole-VM backup was found wanting...

Once you've got your database with high availability, split out the PSC from vCenter and set up at least two of them, the same way you'd set up at least two Active Directory domain controllers. This is going to be the hub of your environment, as both vCenter and other services will rely on it. Using a pair will also require a load balancing solution; although there aren't any throughput data available, I'd guess that the traffic generated for the PSC will be lower than the 10Mbps limit of the free and excellent Citrix NetScaler VPX Express. I've written about it before, and will be using it in my own environment.

Add additional single and/or paired PSCs in geographically distant locations, but don't go crazy: I've seen blogs indicating that the replication domain for the PSC database is limited to 8 nodes. If you're a global enterprise with many geographically-diverse datacenters, consider a pair in your primary, most critical datacenter and single nodes in up to 6 additional datacenters. Have more than 7 datacenters? Consider the resiliency of your intranet connectivity and place the nodes where they will provide needed coverage based on latency and reliability. If you're stumped, give your local Active Directory maven a call; he/she has probably dealt with this exact problem already—albeit on a different platform—and may have insight or quantitative data that may help you make your decision.

Finally, I'm waiting with anticipation on an official announcement for FT support of vCenter Server , which will eliminate the need for more-complex clustering solutions in environments that can support it (from both a storage & network standpoint: FT in vSphere 6 is completely different from FT in previous versions!). Until then, the vCenter Server gets uptime & redundancy more through keeping its database reliable than anything else: HA for host failure; good, tested backups for VM corruption.

Tuesday, February 10, 2015

HP StoreVirtual VSA: The Gold Standard

HP has owned the Left Hand storage system since late 2008, and has made steady improvements since then. The product had already been officially supported on a VM; not only did the acquisition not destroy that option, but HP has embraced the product as a cornerstone of their "software-defined storage" marketing message.

Although other products existed back in 2008, a virtualized Left Hand node was one of the first virtual storage appliances (VSA) available with support for production workloads.

Fast-forward to August, 2012: HP elects to rebrand the Left Hand product as StoreVirtual, renaming the SAN/iQ to LeftHand OS in order to preserve its heritage. The 10.0 version update was tied to the rebranding, and the VSA arm of the portfolio—HP never stopped producing "bare-metal" arrays based on their 2U DL380 server chassis—promised to bring additional enhancements like increased capacity (10TB instead of 2TB) and better performance (2 vCPUs instead of 1) along with price drops.

The 11.0 version was released with even more features (11.5 is the production/shipping version for both bare-metal and VSA), chief of which—in my opinion—is Adaptive Optimization (AO), the ability for node-attached storage to be characterized in one of two tiers.

Note that this isn't a Flash/SSD-specific feature! Yes, it works with solid state as one of the tiers—and is the preferred architecture—but any two performance-vs-capacity tiers can be configured for a node: a pair of 15K RPM SAS drives as Tier 0 performance with 4-8 NL SAS drives as Tier 1 capacity is just as legitimate. HP cautions the architect, however, not to mix nodes with varying AO characteristics in the same way it cautions against mixing single-tier nodes in one cluster.

Personally, I've played with the StoreVirtual VSA off and on over the years. The original hold-back for getting deeply into it was the trial duration: 30 to 60 days is insufficient to "live with" a product and really get to know it. In early 2013, however, HP offered NFR licensing to qualified members of the VMware vExpert community, and those licenses had year-long duration associated with them.

Unfortunately, however, the hosts I was running at home were pretty unsuited to supporting the VSA: limited RAM and 2-4 grossly inferior desktop-class SATA hard drives in each of 2 hosts. I'd still load up the VSA for test purposes; not for performance, but to understand the LeftHand OS better and how failures are handled, configurations are managed, and how the product interacts with other software like Veeam Backup & Recovery. But then I'd also tear down the cluster when I finished with it in order to regain consumed resources.

When PernixData FVP was still in pre-GA beta, I was able to make some system upgrades to add SSD to newer hosts—still with essentially zero local capacity, however—and was able to prove to myself that a) solid state works very effectively at increasing the performance of storage and b) there is a place for storage in the local host.

With the release of the first VMware Virtual SAN beta, I decided it was time to make some additional investments into my lab, and I was able to not only add a third host (the minimum for supported VSAN deployment) but also provision them all with a second SSD and enterprise SATA disks for the experiment. In that configuration, I was able to use one SSD for iSCSI-based performance acceleration (using the now-GA FVP product) and a second SSD for VSAN's solid state tier. My hosts remained limited in the number of "spinning disk" drives that could be installed (four), but in aggregate across three hosts, the total seemed not only reasonable, but seemed to work in practice.

Unfortunately, I was plagued by hardware issues in this configuration: rarely a week went by without either FVP or VSAN complaining about a drive going offline or being in "permanent failure," and it seemed like the weeks when that didn't occur, the Profile Driven Storage service of vCenter—which is critical to making use of VSAN in other products like vCloud Director or Horizon View—would need to be restarted. Getting FVP or VSAN working correctly would usually require rebooting the host reporting an issue; in some cases, VMs would need to be evacuated from VSAN to provide the necessary free space to retain "availability."

In short, the lab environment with my 1Gbps networking and consumer-grade disk & HBA made VSAN and FVP a little too much work.

But I still had that VSA license... If I could get a better HBA—one that would perform true hardware-based RAID and have deeper queue, not to mention other enterprise SATA/SAS capabilities—I'd be able to leverage the existing disk investment with the VSA and have a better experience.

I was able to source a set of Dell PERC H700 adapters, cables and cache batteries from eBay; these were pulled from R610 systems, so dropping them into mine was trivial and the set cost considerably less than a single kit from Dell. Although I could have rebuilt the VSAN and FVP environments on the new HBA—each disk in the system would need to be set up as a single-spindle RAID0 'virtual volume'—I went with a RAID1 set for the pair of SSD and a RAID5 for the spindles. I would be able to continue leveraging PernixData for acceleration using the RAM-backed function, but I was done messing with VSAN for now.

Setting up the v11.5 VSA initially gave me pause: I was booting from SD card, so I could use 100% of the SSD/HDD for it, but how to do it? If the LeftHand OS had drivers for the PERC array—possible: the core silicon of the H700 is a LSI/Symbios product which might be supported in spite of being a Dell OEM—I could do a DirectPath I/O if there was another datastore available on which to run the VSA. A second, similar alternative would be to manually create Physical RDM mappings for the RAID volumes, but that still left the problem of a datastore for the VSA. Yes, I could run the VSA on another array, but if the host ever had issues with that array, then I'd also end up with issues on my LeftHand cluster—not a good idea!

My final solution is a hybrid: The HDD-based RAID group is formatted as a VMFS5 datastore, and the VSA is the only VM using it. A large, 1.25TB 'traditional' VMDK is presented using the same datastore (leaving ~100GB free for the VSA boot drive and files); the SSD-based RAID group is presented as Physical RDM. This configuration permitted me to enable AO on each node, and get an SSD performance boost along with some deep storage from the collection of drives across all three nodes.

In practice, this array has been more trouble-free than my VSAN implementation on (essentially) identical hardware. A key difference, however, has been the performance with respect to inter-node communication: With VSAN, up to four interfaces can be simultaneously configured for inter-node communication, increasing bandwidth and lowering latency. Even with the lower performance characteristics of the disks and HBA in each host, saturating two of the four gigabit interconnects I had configured was possible with VSAN (when performing sequential reads & writes, eg, backups & storage vMotion), so the single gigabit connection available to VSA was very noticeable.

I have since migrated my network environment to use 10Gbps Ethernet for my back-haul network connectivity (iSCSI, NAS, vMotion) and have objective evidence of improved performance of the LeftHand array. I'll be updating this post with subjective test results when the opportunity presents itself.

Citrix NetScaler UI changes

Which is worse?

  • Searching for the solution to a problem and not being able to find it
— or —
  • Finding the exact solution to a problem in a blog, but discovering that it's an older post using out-dated products and documenting an API or UI that no longer exists?

This question comes from some feedback I received on a series of posts I put together that documents my use of the Citrix NetScaler VPX Express virtual appliance as a reverse proxy.

Citrix is doing the right thing: they're rebuilding the GUI in the NetScaler to eliminate Java (as much as possible). It has been a slow-going process, starting with the 10.0 version (as of this writing, 10.5 is current, and there are still one or two places that use a Java module), and one of the drawbacks is that the new HTML-only UI elements can't duplicate the Java UI—so things are...different.
HA Setup, v10.0 & earlier
HA Setup, v10.5
In the screencaps above, you see the older Java-based dialog box and the newer HTML page. They have some of the same data, but they are neither identical, nor are they found in the same exact place from the principal UI.

How does a blogger serve his/her audience? Does one ignore the past and soldier on, or does one revisit the old posts and update them for a new generation of software? If I had positioned myself as a NetScaler expert, that answer is obvious: UI changes in and of themselves would be post-worthy, and revisiting old functions to make them clear under the new UI would make perfect sense.

In this case, however, I have only had a couple of requests for revised instructions using the equivalent UI; I'm not a NetScaler guru, and to be perfectly frank, I haven't the time needed to redo the series. If I get a lot more feedback that this series needs to be updated, I'll think about a second edition using the new UI, but as of now it's going to stay the way it is.

Homelab 2015: Hello 10Gbps!

New year, new post documenting the home lab. I've accomplished a number of upgrades/updates since my last full roundup of the lab, so rather than posting this as another delta, I'm doing this as a full re-documentation of the environment.

Compute: VMware vSphere 5.5

  • 3 x Dell R610, each spec'd as follows:
    • (2) Intel Xeon E5540 @ 2.53GHz
    • Hyperthreading enabled for 16 logical CPUs per host.
    • 96GiB RAM
    • Boot from 4 or 8GB SD card
    • Dell PERC H700 6Gbps SAS/SATA HBA
      • (4) 500GB Seagate Constellation.2 (ST9500620NS) SATA
        • RAID5
        • Formatted as local vmfs5 datastore
      • (2) 240GB Intel 530 SATA SSD
        • RAID1
        • RDM for StoreVirtual VSA (see below)
    • Quad port Broadcom BCM5709 Gigabit Copper (embedded)
    • Dual port Mellanox MT26448 10GigE (8-lane PCIe), 850nm SFP+ optics
    • iDRAC 6 Enterprise
    • Redundant power

Storage: IP-based

  • iomega StorCenter ix2-200 "Cloud Edition"
    • (2) 1TB Seagate Barracuda (ST1000DM003) 7200RPM SATA
    • RAID1
    • (1) 1000Base-T
    • LifeLine OS v3.2.10.30101
    • NFS export for VMs
  • 2 x Lenovo (iomega/EMC) px6-300d
    • (6) 2TB Hitachi Deskstar (HDS723020BLA642) 7200RPM SATA
    • RAID5
    • (2) 1000Base-T, bonded, multiple VLANs
    • LifeLine OS v4.1.104.31360
    • 2TB iSCSI Target for VMs
  • Synology DS2413+
    • (12) 2TB Seagate Barracuda (ST2000DM001) 7200RPM SATA
    • RAID1/0
    • (2) 1000Base-T, bonded, multiple VLANs (CLI-added)
    • DSM 5.1-5022 Update 2
    • NFS exports:
      • ISOs (readonly, managed by SMB)
      • Logs
      • VMs
  • Synology DS1813+
    • (8) 256GB Plextor PX-256M6S SSD
    • RAID5
    • (4) 1000Base-T
      • (1) Management network
      • (2) iSCSI network (multi-homed, not bonded)
    • ~1.6TB iSCSI Target (block mode)
  • HP StorVirtual "Lefthand OS"
    • (3) ESXi Virtual Appliances, 1 on each host
      • 1280GB VMDK on local storage; tier 1
      • 223GB RDM on SSD volume; tier 0
    • 4486.49GB Raw, 2243GB RAID1
    • (2) 1TB volumes for VMs
      • Thin provisioning
      • Adaptive Optimization
    • iSCSI network: 10GbE
    • Management: 1GbE

Networking:

  • (2) Cisco SG500X-24
    • (4) 850nm SFP+ optics for 10GbE
    • (24) 1000Base-T MDI/MDI-X
    • Primary ISL: 10GbE
    • Backup ISL: (1) 2x1GbE LACP LAG
    • STP Priority: 16384
  • Cisco SG300-28
    • (28) 1000Base-T MDI/MDI-X
    • (2) 2x1GbE LACP LAG for link to SG500X-24
    • STP Priority: 32768
  • Google Fiber (mk.1)
    • "network box"
    • "storage box"
    • "fiber box"
  • Various "dumb" (non-managed) 1GbE switches
  • Apple Airport Extreme (mk.4)/Express (mk.2)

Miscellaneous:

  • (4) APC BackUPS XS1500
  • Internet HTTP/SSL redirection via Citrix NetScaler VPX (HA pair)
  • Remote access via:
    • TeamViewer 10
    • Microsoft RDS Gateway
    • VMware Horizon View
    • Citrix XenApp

Connectivity Diagrams:

Host Configuration

Environment