Tuesday, June 7, 2022

Synology DSM and Veeam 11

For a long time, Veeam has been telling its users to not use "low-end NAS boxes" (eg, Synology, QNAP, Thecus) as backup repositories for Backup & Replication (VBR), even though these Linux-based devices should be compatible if they have "x86" architecture (as opposed to ARM).

The reality is that none of these devices use "bog standard" Linux distributions, and due to their appliance-based nature, have some significant limitations on what can be done to their custom distributions.

However, there are many folks—both as home users or within small/budget-limited businesses—who are willing to "take their lumps" and give these things a shot as repositories.

I am one of them, particularly for my home "lab" environment. I've written about this use case (in particular, the headaches) a couple of times in this blog [1, 2], and this post joins them, addressing yet another fix/workaround that I've had to implement.

Background

I use a couple of different Synology boxes for backup purposes, but the one I'm dealing with today is the DS1817+. It has a 10GbE interface for connectivity to my network, a quad-core processor (the Intel Atom C2538) and 8GB RAM (upgradable to 16GB, but I haven't seen the demand that would require it). It is populated with 8x1TB SATA SSDs for ~6TB of backup capacity.

I upgraded DSM to 7.0 a while back, and had to make some adjustments to the NFS target service to continue to support ESXi datastores via NFS 4.1

Yesterday, I updated it to 7.1-42661 Update 2, and was greeted to a number of failed backup jobs this morning.

Symptoms

All the failed jobs have uniform symptoms: Timeout to start agent

With further investigation, I saw that my DS1817+ managed server was "not available", and when attempting to get VBR to re-establish control, kept getting the same error with the installation of transport services:

Installing Veeam Data Mover service Error: Failed to invoke command /opt/veeam/transport/veeamtransport --install 6162:  /opt/veeam/transport/veeamtransport: error while loading shared libraries: libacl.so.1: cannot open shared object file: No such file or directory

Failed to invoke command /opt/veeam/transport/veeamtransport --install 6162:  opt/veeam/transport/veeamtransport: error while loading shared libraries: libacl.so.1: cannot open shared object file: No such file or directory

Workaround

After failing to find a fix after some Linux-related searches, I discovered a thread on the Veeam Community Forum that addressed this exact issue [3]. 

This is apparently a known issue with VBR11 and Synology boxes, and as Veeam is moving further and further away from the "on the fly" deployment of the transport agent to a permanently-installed "Data Mover" daemon (which is necessary to provide the Immutable Backup feature), it becomes a bigger issue. Veeam has no control over the distribution—and would just as soon have clients use other architectures—and Synology would probably be happy with customers considering their own backup tool over competing options...

At any rate, some smart people posted workarounds to the issue after doing their own research, and I'm re-posting for my own reference because it worked for me.

  1. Download the latest ACL library from Debian source mirrors. The one I used—and the one in the Forum thread—is http://ftp.debian.org/debian/pool/main/a/acl/libacl1_2.2.53-10_amd64.deb
  2. Unpack the .deb file using 7zip
  3. Upload the data.tar file to your Synology box. Feel free to rename the file to retain your sanity; I did.
  4. Extract the tarball to the root directory using the "-C /" argument:
    tar xvf data.tar -C /
  5. If you are using a non-root account to do this work, you'll need to use "sudo" to write to the root. You will also need to adjust owner/permissions on the extracted directories & files:
    sudo tar xvf data.tar -C /
    sudo chown -R root:root /usr/lib/x86_64-linux-gnu
    sudo chmod -R 755 /usr/lib/x86_64-linux-gnu
  6. Create soft links for these files in the boxes filesystem:
    sudo ln -sf /usr/lib/x86_64-linux-gnu/libacl.so.1 /usr/lib/libacl.so.1
    sudo ln -sf /usr/lib/x86_64-linux-gnu/libacl.so.1.1.2253 /usr/lib/libacl.so.1.1.2253
  7. Last, get rid of any previous "debris" from failed transport installations
    sudo rm -R /opt/veeam
Once the Synology is prepped, you must go back into VBR and re-synchronize with the Linux repository:
  1. Select the "Backup Infrastructure" node in the VBR console
  2. Select the Linux node under Managed Servers
  3. Right-click on the Synology box being updated and select "Properties..." from the popup menu.
  4. Click [Next >] until the only option is [Finish]. On the way, you should see that the Synology is correctly identified as a compatible Linux box, and the new Data Mover transport service is successfully installed.

Summary

I can't guarantee that this will work after a future update of DSM, and there may come a day when other libraries are "broken" by updates to VBR or DSM. But this workaround was successful for me.

Update

The workaround has persisted through a set of updates to DSM7. I have seen this come up with DSM6, but this workaround does not work on that; too many platform incompatibilities, I suspect. Need to do some more research & experimentation for DSM6...

Friday, February 28, 2020

Update: maintaining the pi-hole HA pair

In an earlier post, I shared how I got pi-hole working in my environment, thanks to a number of posts on a reddit thread. Since then, I've been living with the setup and tweaking my configuration a bit.

This post documents one of the tweaks that might be useful for others...

If you're using the method documented by Panja0, you know that there's a script in the pi-hole distribution (gravity.sh) that must be edited in order to synchronize files between the nodes of the HA pair. Well, he reminds you in the tutorial that it'll need to be re-edited every time you update pi-hole, or the synchronization won't occur.

As you might guess, I didn't remember when I updated a week ago, and couldn't understand why my settings weren't getting synchronized. So I went back to the post, reviewed my settings, and face-palmed myself when I discovered my oversight. I had failed to re-edit gravity.sh

After I did the necessary edits, I realized that, even if I'd remembered about it, I'd still need to refer to the original post to get the right command line, etc., for the edits.

I didn't want to spend the time to figure out how to trigger a script to make the update for me upon a pi-hole update, but I sure could figure out the script to do the correct updates!

I mean... come on: what better use of automation than to use a script to a) check to see if the update has already been performed, and b) if not, perform the update?

#!/bin/bash
# make sure the pihole-gemini script is being run by gravity.sh

GEMINI='su -c /usr/local/bin/pihole-gemini - <gemini user>'
GRAVITY=/opt/pihole/gravity.sh

TRIGGER=$(sed -e '$!{h;d;}' -e x $GRAVITY)
if [ "$TRIGGER" != "$GEMINI" ]
then
        # insert the gemini commandline before the last line of the script
        sed -i "$ i$GEMINI" $GRAVITY
fi

If you decide to use the script, just make sure that you make any necessary modifications for the first two script variables to match your installation. You also need it on both nodes of your HA pair!

In my setup, I'm saving this script in the /etc/scripts directory, which I'm using for other "keepalived" scripts. I'll remember to run it next time I update pi-hole, and that's all I'll need to recall!

Saturday, February 1, 2020

Putting Pi-hole to work

I've been reading about my friends' use of Pi-hole on their home networks, and I've been curious about trying it to see how well it does. I've resisted doing so, primarily because of the single point of failure a pi-hole system represents: if it's unavailable, you get no DNS.

And we all know, it's never DNS...except when it is.

An alternative, naturally, it to run a pair of systems. Why not? Raspberry Pi devices are relatively cheap, and the software is all no-charge.

For most home users, that might be fine, but I run a lab in my home that also provides services to the household, so I had more permutations to worry about: what happens if my Pi dies? what happens if my domain controllers are unavailable? Etc.

The solution I've settled on is to run a primary Pi-hole server as a VM in my lab environment—which gives me more than enough performance and responsiveness, even under the most demanding of situations—and a secondary with a Raspberry Pi, so that even if the VM environment goes "pear shaped," I still get DNS resolution.

In order to accommodate several types of outages, yet avoiding the need to both double-up the configuration work (with the potential of missing an update and having weird results to troubleshoot) while providing pre-configured support for a couple of likely failure and maintenance scenarios, I've mated the two systems together in a failover cluster by configuring the "keepalive" daemon along with some scripting to keep the two systems in sync for the blocking function, while leaving some configuration elements (upstream DNS servers for one) independent of each other.

I didn't do the "heavy lifting" on the sync and keepalive aspects; those were provided by reddit user Panja0 in this post: https://www.reddit.com/r/pihole/comments/d5056q/tutorial_v2_how_to_run_2_pihole_servers_in_ha/

I'm running ubuntu server 19.10 (Eoan Ermine... whatever) instead of Raspbian Stretch/Buster, so there have been a number of changes I've had to make to the systems to adapt:

  • To get keepalived installed, I needed libipset11, not libipset3 (mentioned in the comments of the HA tutorial)
  • I had to modify the rsync command arguments in the synchronization script due to changes between Debian versions that I'm running versus the original post (mentioned in the comments of the HA tutorial)
  • I had to permit my rsync user to skip password re-auth by editing the sudoers file; I think this may also be a version-specific issue.
  • I added an NTP client to utilize my GPS-based hardware time server; this is super important when using a Raspberry Pi without a real-time clock HAT add-on.
  • The primary system uses the lab's DNS (domain controllers) for its upstream DNS servers. In addition to avoiding the need to configure additional conditional forwarding rules for dnsmasq, this gives the Pi-hole server the identity of the clients via DNS
  • The secondary uses OpenDNS servers—I have a household account with several filtering options enabled already—with a dnsmasq configuration for conditional forwarding on the domain.
Given my homelab, it was pretty trivial to set this up as a VM, but what really sold it to me was getting the Raspberry Pi running in concert. I originally started with a Pi 3 Model B that I had lying around after an old project that I'd quit, but the performance difference between the two platforms was so noticeable that going with a true primary/secondary setup made the most sense. I considered upgrading to the Pi 4, but decided that my desire to avoid purchasing micro-HDMI adapters outweighed the value in the more-robust, newer model. I did decide to go ahead and upgrade from the 3 to the 3+, however, when I discovered that my local MicroCenter had them for $34US; I also paired the new unit with a passive heatsink case, which has allowed the Pi to run significantly cooler (30°F) than the original setup, which utilized aluminium heatsinks and a non-vented plastic case.

Aside from this "vanilla" setup, I also took note of the additional block lists that my friend Tim Smith wrote about in a blog post. I need to let this "bake" for a while before considering it finished, but I'm liking what I'm seeing so far.

Thursday, September 19, 2019

New VM cleanup

When creating a new VM in vSphere, you get a number of virtual devices & settings by default that you probably don't have any interest in keeping:

  • Floppy drive (depending on version & type of client in use)
  • Floppy adapter
  • IDE ports
  • Serial ports
  • Parallel ports
Given that some of these are redundant (why keep the IDE adapter when you're using SATA for the optical device?) while others are polled I/O in Windows (OS must keep checking to see if there's activity on the port, even if there will never be any), it just makes things more streamlined if you cleanup these settings when creating a new VM...then using the cleaned-up VM as a template for creating new VMs later on.

Step 1: create a new VM
Step 2: Set VM name and select a location
Step 3: Select a compute resource
Step 4: Select storage
Step 5: Set compatibility no higher than your oldest version of ESXi that the template could be deployed on.
Step 6: Select the guest OS you'll install
Step 7a: Customize hardware: CPU, Memory, Hard Drive
Step 7b: Attach NIC to a general-purpose or remediation network port
Step 7c: Don't forget to change the NIC type! If you don't the only way to change it later is to remove & re-add the correct type, which will also change the MAC address and, depending on the order you do the modifications, could put the new virtual NIC into a different virtual PCIe slot on the VM hardware, upsetting other configurations in the guest (like static IP addresses).
Step 7d: Jump to the Options tab and set "Force BIOS setup"
Step 8: Finish creating the VM
Step 9: Open remote console for VM
Step 10: Power On the VM. IT should pause at the BIOS editor screen.
Step 11: On the Advanced page, set Local Bus IDE to "Disabled" if using SATA; set it to "Secondary" if using IDE CD-ROM (Even better: Change the CD-ROM device to IDE 0:0 and set it to "Primary").
Step 12: Descend into the "I/O Device Configuration" sub-page; by default, it'll look like the screenshot below:
Step 13: Using the arrow keys & space bar, set each device to "Disabled", then [Esc] to return to the Advanced menu.
Step 14: Switch to the Boot page. By default, removable devices are first in the boot order.
Step 15: Use the minus [-] key to lower the priority of removable devices. This won't hurt the initial OS setup, even on setup ISOs that normally require a key-press to boot off optical/ISO media: the new VM's hard drive has no partition table or MBR, so it'll be skipped as a boot device even when it's first. Once the OS is installed, you'll never have to worry about a removable media causing a reboot to stall.
Step 16: Press [F10] to save the BIOS config, then use the console to attach to an ISO (local or on a datastore) before exiting the BIOS setup page.


Step 17: Install the guest OS, then add VMware Tools. Perform any additional customization—e.g., patching, updates, and generalization—then convert the new VM to a template.

You're set! No more useless devices in your guest that take cycles from the OS or hypervisor.

Additional Note on modifying existing VMs:
Aside from the need to power down existing VMs that you might want to clean up with this same procedure, the only issue I've run into after doing the device + BIOS cleanup is making sure I get the right combination of IDE channels & IDE CD-ROM attachment. The number of times I've set "Primary" in BIOS but forgot to change the CD-ROM to IDE 0:0 is ... significant.

Additional Note on Floppy Drives:
Floppy drive handling is a special case, and will very much depend on which version of vSphere—and therefore, the management client—you're using. If you have the "Flex" client (or are still using v6.0 and have the C# client), the new VM will have a floppy disk device added by default. Naturally, you want to remove it as part of your Hardware Customization step during new VM deployment.
If you're happily using the HTML5 Web Client, you may find that the floppy is neither present, nor manageable (for adding/removing or attaching media)... This is the 0.1% of feature parity that I still find lacking in the H5 client. Hopefully, it'll get added, if for no better reason than to allow an admin to remove floppy devices that are still part of VMs that were created in older versions.

Tuesday, January 8, 2019

Merry Christmas: Apple Macintosh SE

Christmas, 2018.
My brother has given to me a circa-1989/1990 Apple Macintosh SE HDFD. It's in a "carrying" case, includes an external 800K floppy drive, Apple Desktop Bus keyboard and mouse, power cord, manuals, and System 6 install disks.

The system has 2.5MB RAM, a 20MB SCSI hard drive, and a 1.44MB internal floppy.

2.5MB RAM
20MB Hard drive (with "stuff" on it)
System 6, at your service...
My wife wanted to know what I'd do with it... well, the answer is: play with it.

The first thing I did was look into "useful" upgrades: Network, Memory, Capacity.

I found an Asante MacCon adapter for the SE
I found 4 x 1MB RAM SIMMs for the SE
I found this gizmo: SCSI2SD

DING-DING-DING!

I can work with this.

And then I ran across this: macrepository.org

Wednesday, May 17, 2017

VBR v10 new hotness

Sitting in the general session is not typically the way I'd compose a new post, but I'm pretty stoked by some new, long-desired features announced for the next version of Veeam Backup and Replication (VBR), version 10.

First is the (long awaited) inclusion of physical endpoint backup management via VBR console. We've had Endpoint Backup for a while, which is awesome, and we've been able to use VBR repositories to store backups, but all management was at the endpoint itself. In addition to centralized management, the newest version of the managed endpoint backup (alright, alright... Agent) will support Microsoft Failover Clusters at GA!

Second is the new feature that significantly expands VBR's capability: the ability to backup NAS devices. Technically, it's via SMB or NFS shares, so you could target any share--including one on a supported virtual or physical platform--but the intention is to give great backup & recovery options for organizations that utilize previously-unsupported platforms for NAS, like NetApp, Celera, etc.

Third--and most exciting to me, personally--is the addition of a replication mode utilizing VMware's new "VMware APIs for I/O Filtering" (VAIO). This replication mode uses a snapshot-free capture of VMDK changes on the source, with and the destination being updated on a (configurable, default of 15s) by-the-second interval. This new replication method is branded "Veeam CDP" (Continuous Data Protection). There are competing products on the market that offer similar capability, but Veeam is advertising that they are the first to leverage VAIO while other products are using either undocumented/unsupported APIs, or old APIs intended for physical replication devices.

There are a number of other nice, new features coming--Object storage support, Universal APIs for storage integration, etc.--but these three will be the big, compelling reasons to not only upgrade to Version 10 when it arrives (for current customers) but to upgrade your vSphere environments if you haven't already embraced Version 6.x.

Saturday, April 15, 2017

Upgrading to vSphere 6.5 with NSX already installed

This has been a slow journey: I have so many different moving parts in my lab environment (all the better for testing myriad VMware products) that migrating to vSphere 6.5 was taking forever. First I had to wait for Veeam Backup & Replication to support it (can't live without backups!), then NSX, then I had to decide whether to discard vCloud Director (yes, I'm still using it; it's still a great multitenancy solution) or get my company to give me access to their Service Provider version...

I finally (finally! after over a year of waiting and waiting) got access to the SP version of vCD, so it was time to plan my upgrade...

My environment supports v6.5 from the hardware side; no ancient NICs or other hardware anymore. I was already running Horizon 7, so I had two major systems to upgrade prior to moving vSphere from 6.0U2 to 6.5a:

  • vCloud Director: 5.5.5-->8.0.2-->8.20.0 (two-step upgrade required)
  • NSX: 6.2.2-->6.3.1
There was one hiccup with those upgrades, and I'm sure they may be familiar to people with small labs: the NSX VIBs didn't install without "manual assistance." In short, I had to manually place each host into maintenance mode, kick off the "reinstall" to push the VIBs into the boot block, then restart the host. This wouldn't happen in a larger production cluster, but because mine is a 3-node VSAN cluster, it doesn't automatically/cleanly go into Maintenance Mode.

Moving on...

Some time ago, I switched from an embedded PSC to an external, so I upgraded that first. No problems.

Upgrading the stand-alone vCenter required a couple of tweaks: I uninstalled Update Manager from its server (instead of running the migration assistant: I didn't have anything worth saving), and I reset the console password for the appliance (yes, I'd missed turning off the expiration, and I guess it had expired). Other than those items? Smooth sailing.

With a new vCenter in place, I could use the embedded Update Manager to upgrade the host. I had to tweak some of the 3rd-party drivers to make it compatible, but then I was "off to the races."

After the first host was upgraded, I'd planned on migrating some low-priority VMs to it in order to "burn in" the new host and see if some additional steps would be needed (ie removing VIBs for unneeded drivers that have caused PSODs in other environments I've upgraded). But I couldn't.

Trying to vMotion running machines to the new host, I encountered network errors. "VM requires Network X which is not available". Uh oh.

I also discovered that one of the two DVS (Distributed Virtual Switch) for the host was "out of sync" with vCenter. And no "resync" option that would normally have been there...

Honestly, I flailed around a bit, trying my google fu and experimenting with moving VMs around, both powered-on and off, as well as migrating to different vswitch portgroups. All failing.

Finally, something inspired me to look at my VXLAN status; it came to me after realizing I couldn't ping the vmknic for the VTEPs because they sit on a completely independent IP stack, making it impossible to use vmkping with a VTEP as a source interface.

Bingo!

The command esxcli network vswitch dvs vmware vxlan list resulted in no data for that host, but valid config information for the other hosts.

A quick look at NSX Host Preparation confirmed it, and a quick look at the VIBs on the host nailed it down: esx-vsip and esx-vxlan were still running 6.0.0 versions.

I went back through the process I'd used for upgrading NSX in the first place, and when the host came back up, DVS showed "in sync", NSX showed "green" install status and—most important of all—VMs could vMotion to the host and they'd stay connected!

UPDATE: The trick, it seems, is to allow the NSX Manager an opportunity to install the new VIBs for ESXi v6.5 before taking the host out of maintenance mode. By manually entering Maintenance Mode prior to upgrading, VUM will not take the host out of Maintenance, giving the Manager an opportunity to replace the VIBs. Once the Manager shows all hosts upgraded and green-checked, you can safely remove the host from Maintenance and all networking will work.

Monday, February 20, 2017

ADFS and SNI

SNI, or Server Name Indicator, is an extension to TLS (Transport Layer Security, the evolutionary child of SSL/Secure Socket Layer) that permits multiple certificates (and therefore encrypted sessions) to be bound to the same TCP port.

Starting with ADFS v3.0 (aka ADFS for Windows Server 2012R2), Microsoft uses SNI by default. On the whole, this has little impact on most users of ADFS, but for one small, important subset: users that sit behind reverse proxy or hardware SSL-offload devices.

Readers of this blog know that I use the Citrix NetScaler VPX Express as a reverse proxy for my home lab; until I tried to stand up an ADFS server (running Server 2016) behind it—I'm going to start digging into Office 365 in a serious way and want the most seamless user experience—I'd never had a problem with it.

I just could NOT figure out why the ADFS system was immediately rejecting connections via NetScaler, while it was perfectly happy with local connections.

I knew things were problematic as soon as I did packet captures on the NetScaler: the [SYN]-[SYN, ACK]-[Client Hello] were immediately followed by [RST, ACK] and a dropped connection.


Once I "fired up" a copy of Wireshark and pulled some captures at the ADFS host, however, I was able to compare the difference between the NetScaler-proxied connections that were failing, and on-prem connections that were successful.



At that point, I could explicitly compare the two different [Client Hello] packets and see if I could tell the difference between the two...

Unfortunately, I started with comparing the protocols, ciphers and hash algorithms. It took a while to get the TLS1.2 setup just right to mimic the local connection, but no joy. But then I went after the extensions: only one extension was in the "misbehaving" [Client Hello]
There are a bunch of extensions in the "working" [Client Hello]:
holy crap

To make my task easier, I switched back to google-fu to see if I could narrow down the search; voila!

I found an article that talked about handling ADFS clients that don't support the SNI extension, and the lightbulb went on: my browsers do SNI, but with the NetScaler acting as a proxy SNI support is disabled by default.

Luckily there are two fixes:
  1. Update the ADFS server with a "blanket" or "fallback" binding for the ADFS service (see https://blogs.technet.microsoft.com/applicationproxyblog/2014/06/19/how-to-support-non-sni-capable-clients-with-web-application-proxy-and-ad-fs-2012-r2/)
  2. Update the NetScaler service entry (in the SSL Parameters section) to support SNI for the expected client hostname.
I went with the latter; that way I don't modify any more of the ADFS host than necessary, and because the NetScaler is essentially acting as a client while it's doing its proxy duties, that seemed to make the most sense.

Within a minute of adding the SNI extension, the ADFS system worked as expected.

Wednesday, February 15, 2017

SSL Reverse Proxy using Citrix NetScaler VPX Express

Part 6 in a series

In previous posts I covered the configuration of the NetScaler VPX Express for use as an intelligent reverse proxy, allowing the use of a single public IP address with multiple interior hosts.

In recent days, I've been working on adding Horizon View to my home lab; in addition to requisite Connection Servers, I'm using the EUC Access Point virtual appliance as a security gateway instead of Security Servers paired with dedicated Connection Servers.

The procedure I outline for the creation of a content-switching configuration works as you'd expect...to a point.

I found that I kept getting "Tunnel reconnection is not permitted" errors when trying to login using the dedicated Horizon Client; this was extremely frustrating because HTML access (using nothing but an HTML5-compatible browser) was working flawlessly.

Upon reviewing the client logs, I noticed that the response from the tunnel connection (HTTP/1.1 404 Not Found) was from IIS, not a Linux or other non-Windows webserver. In my configuration, my content-switching plan uses a Windows IIS server as the fall-through (default/no-match).

Theory: for whatever reason, while the registration process for the Horizon Client was being properly switched to the Access Point, login via tunnel was not.

By capturing a trace (including SSL decoding) at the NetScaler and reviewing it in Wireshark, I was able to see that the client is using two different host strings, one during the initial login followed by a second one during tunnel creation.

What's the difference? The initial login doesn't include the port number in the host string; the tunnel request includes it...
Login: vdi.corp.com
Tunnel: vdi.corp.com:433
The fix is to add an additional match criteria for your content switching policy:
Before: HTTP.REQ.HOSTNAME.EQ("vdi.corp.com")
After: HTTP.REQ.HOSTNAME.EQ("vdi.corp.com")||HTTP.REQ.HOSTNAME.EQ("vdi.corp.com:443")
You can also create an additional policy with the "fqdn:443" match, but editing the policy was faster to implement.

UPDATE: I've done some more digging, and there are additional arguments/functions that would also work—and would've worked transparently had I used them in the first place—instead of the EQ("") expression:
HTTP.REQ.HOSTNAME.CONTAINS("vdi.corp.com")
HTTP.REQ.HOSTNAME.SERVER=="vdi.corp.com"
HTTP.REQ.HOSTNAME.STARTSWITH("vdi.corp.com")
HTTP.REQ.HOSTNAME.PREFIX('.',0).EQ("vdi")

Friday, December 23, 2016

Apple Watch First Impressions

 ...from a former Pebble user


When Pebble announced their acquisition by FitBit, I was cautious about the future of the product: I backed the original Pebble on Kickstarter, as well as the Pebble Steel, Time Steel and finally, Time 2 when the opportunities presented themselves. But then recent things like having a total reset screwing up all my settings (and needing to do a factory reset to get things back) and a limited lifetime (and no more warranty support) for the existing units, I decided to look elsewhere for a good smartwatch.

As a longtime iPhone/iPad user I'd looked at the specs for Apple Watch when it was first released, and between the significant cost difference from the Pebble (like 4x more expensive, depending on the edition and band choices) and significant hardware limitations (Single-day battery life? Really? Not water resistant?), the sale of Pebble was making my smartwatch options pretty bleak.

However, the recently released Series 2 from Apple addressed 2 of the 3 biggest faults I had with the platform (nothing is going to address the cost problem: this is Apple we're talking about, and all of its options are boutique-priced) by adding significant strides to battery life along with 50M water resistance.

So I pulled the trigger and yesterday was able to take delivery of a 42mm Stainless Steel with Milanese Loop band in Space Black.
42mm Apple Watch Series 2 in Space Black
with Milanese Loop band
If you're interested in an un-boxing, you can search elsewhere. Suffice it to say that, in typical Apple fashion, the watch was simultaneously beautifully and over-packaged; a fair expectation for an $800 timepiece, whether it comes from Apple or not, but the amount of material waste from the packaging hails back to when Apple thought they were competing in the luxury timepiece market rather than the fitness wearables market. They really, really could've gone with less.

I started by placing the watch on the charging disc for a few hours to make sure it was well charged, then I went through the pairing process. Unlike Pebble, the Watch doesn't use two different Bluetooth profiles (one standard and one low-energy), and pairing with my iPhone 6s running iOS 10.2 was smooth and less error-prone compared to my usual experience with Pebble pairing. If there's one thing to be said for getting the two devices from the same manufacturer, it's the effortless user experience with pairing.

Before purchasing, I visited a local Apple store to get a feel for my choices in cases and bands. I selected the 42mm over the 38mm because of the larger display and my old eyes. The stainless steel case is a heftier feel over aluminium (or ceramic), which I definitely prefer, and there was a noticeable difference between the 38mm and 42mm as well, solidifying my choice of that size. Lighter watches tend to slide around to the underside of my wrist, while heavier ones seem to stay in place on the top. And if I have to deal at all with the watch on the underside of my wrist, the sapphire crystal of the stainless steel & ceramic cases was a must. I also prefer the heavier link band, but between the $500 premium and its "butterfly clasp" (which I hate), there was no way I was going with the Apple link band. The Milanese felt "weighty" enough in comparison to the link band, and its "infinite adjustability" had some appeal as well.

Once I had the watch paired and on my wrist, I started digging into the features I'd come accustomed to on the Pebble. Probably the biggest surprise was the dearth of watch face choices: unlike the Pebble ecosystem, with thousands of watch faces to choose from—everything from utilitarian designs to homages to Star Trek to the silly "Drunk O'Clock" face—the handful of faces available in the Watch ecosystem was a big surprise.

Worse, while all the Watch faces are customizable to some degree, all of them have the limitation of disallowing the customization of "time" itself. The face I'm most accustomed to on the Pebble—YWeather by David Rincon—is nearly reproducible on the Watch using the "Modular" face, but the options—or "Complications" as Apple terms them—aren't very flexible and make "time" a less-prominent feature in the face. Which, in my opinion, sort of defeats the purpose in a watch face.
Apple Watch
"Modular"
Pebble
"YWeather"

If I could just move the Time to the center section and make it more prominent, while moving the date to the upper-right, it'd be good enough...

Notifications are also very different on the Apple Watch; the most significant seems to be the suppression of all notifications when the phone is actively being used, which I'm extremely unhappy with. Among other things, it means that I'm not getting notifications when I've got the phone plugged into power and showing a route in Waze. Even when the phone is locked & screen is off, I'm finding that notifications I usually received on the Pebble are missing/silent on the watch: I've yet to get a notification from Slack, which is one of the busiest apps on my phone after Mail itself.
Yes, I've made sure that things like "cover to mute" is disabled and "mirror phone" is set for pretty much all of the integrations on the watch, but the only type of notification that I get seems to be Messages and Calendar.

Application integration is nice for many apps I have on the phone; being able to quickly raise/lower the garage door using GarageIO on the watch instead of the phone is nice, as is checking the home alarm. However, it does seem that some watch app integrations require the phone-based app to be running (or at least "backgrounded") in order for the watch component to function. It's not consistent, so I'm still trying to figure out which ones need to be running in order to work.

The blob of apps in the App Layout sucks, however. While I have the ability to move apps around to change their proximity to the "central" Clock app, the fact that there are so many that I'd just as soon never see—even after telling Watch to uninstall the integration—is mind-boggling when you consider the minimalist design elements used everywhere else in all Apple products.

At any rate, I'm still getting used to this thing, but from my perspective, I like parts of it, but other parts are still inferior to Pebble

Tuesday, November 8, 2016

Virtual SAN Cache Device upgrade

Replacing/Upgrading the cache+buffer device in VSAN

Dilemma: I've got a VSAN cluster at home, and I decided to switch from single diskgroups-per-host to dual to give myself a bit more availability as well as additional buffer capacity (with all-flash, there's not much need for a read cache).

My scenario has some unique challenges for this transformation. First, although I already have the new buffer device to head the new disk group, I don't actually have all the new capacity disks that I'll need for the final configuration: I'll need to use some of the existing capacity disks if I want to get the second disk group going before I have the additional capacity devices. Second, I have insufficient capacity in the remainder of the VSAN datastore to perform a full evacuation while still maintaining policy compliance (which is sort of why I'm looking to add capacity in addition to splitting the one disk group up).


The nominal way to perform my transformation is:
  1. Put the host into maintenance mode, evacuating all registered VMs
  2. Delete the disk group, evacuating the data so all VMs remain storage policy-compliant.
  3. Add the new device
  4. Rebuild disk group(s)
I already took a maintenance outage during the last patch updates and added my new cache+buffer device to each host, so "Step 3" is already completed.
And then I hit on something: While removing the buffer device from a diskgroup will cause the decommissioning of the entire disk group, individual capacity devices can be removed without upsetting more than the objects being stored on that device alone. I have sufficient capacity in the remainder of the disk group—not to mention on the other hosts in the cluster—to operate on individual capacity elements.

So, here's my alternative process:

  1. Remove one capacity device from its disk group with full migration

  2. Add the capacity device to the new disk group.

It takes longer because I'm doing the evacuation and reconfiguration "in series" rather than "in parallel," but it leaves me with more active & nominal capacity+availability than doing it on an entire diskgroup at once.

My hosts will ultimately have two disk groups, but they'll break one "rule of thumb" by being internally asymmetric: My buffer devices are 400GB and 800GB NVMe cards, respectively, so when I'm fully populated with ten (10) 512GB capacity disks in each host, four (4) will be grouped with the smaller and six (6) will be grouped with the larger. When you keep in mind that Virtual SAN won't use more than 600GB of a cache+buffer device regardless of its size, it actually has some internal symmetry: each capacity disk will be (roughly) associated with 100GB of buffer, for a ~5:1 buffer:capacity ratio.

CLI alternative

Although this entire process can be performed using the Web Client, an alternative is to write a CLI script. The commands needed are all in the esxcli storage or vsan namespaces; combined with some shell/PowerShell scripting, it is conceivable that one could:
  • Identify storage devices.
    esxcli storage core device list
  • Identify any existing disk group, cache+buffer and capacity devices
    esxcli vsan storage list.
  •  Remove one of the capacity disks with migration
    esxcli vsan storage remove -d <device> -m evacuateAllData
  • Create a new disk group using an available flash device from the core device list as the new group's cache+buffer device, and the recently evacuated device as the capacity device
    esxcli vsan storage add -s <cache+buffer device> -d <device>
  • Loop through the remaining capacity devices, first removing then adding them to the new disk group. The esxcli vsan storage remove command is blocking when run from the ESXi console, so your script should wait for full evacuation and availability before the next step in the script is executed.

Thursday, October 13, 2016

Adding floppy for PVSCSI drivers when creating a VM in vCenter Web Client

Someone asked in a private slack channel if it was "just him" or can you really not add a floppy image when creating a VM using the Web Client. This is relevant any time you want to build a VM using the PVSCSI drivers so they'll always be available, even if VMware Tools is uninstalled.
The answer—at least with v6.0U2—is "no."
In this scenario, the vmimages folder won't expand; it offers the "arrowhead" showing there is content to be discovered within, but when you select it, you get no content...

Fortunately, there's a workaround: if you go ahead and save the new VM (without powering on) and then edit it, modifying the source for the floppy image, the vmimages folder will correctly expand and populate, allowing you to select one.

UPDATE: It turns out we were talking about two different Web Clients! My assumption was that we were referring to the vCenter Web Client, while the person asking was referring to the new(ish) Host Web Client.

The defect and workaround as I've documented it only apply to the vCenter Web Client. The Host Web Client will not behave correctly even in the workaround; this is a solid defect. There are other workarounds—use the C# client, copy the IMG file to an accessible datastore, etc.—but none are as good as the defect being eliminated in the first place.

Friday, February 26, 2016

NTFS, dedupe, and the "large files" conundrum.

Microsoft did the world a huge favor when they added the deduplication feature to NTFS with the release of Windows Server 2012. We can have a discussion outside of this context on whether inline or post-process dedupe would have been better (the NTFS implementation is post-process), but the end result is something that seems to have minimal practical impact on performance but provides huge benefits in storage consumption, especially on those massive file servers that collect files like a shelf collects dust.

On the underside, the dedupe engine collects the duplicate blocks and hides them under the hidden "System Volume Information" folder and leaves pointers in the main MFT. You can do a disk size scan and see very little on-disk capacity taken by a given folder, yet a ginormous amount of disk is being consumed in that hidden folder.


See that little slice of color on the far left? That's the stub of files that aren't sitting in the restricted dedupe store. The statistics tell a different story:


200GB of non-scannable data (in the restricted store) versus 510MB stored in the "regular" MFT space. Together they comprise some 140K files in 9K folders, and the net action of dedupe is saving over 50GB in capacity on that volume:


The implementation is fairly straightforward, and I've found few instances where it didn't save the client a bunch of pain.

Except when used as a backup target.

Personally, I though this was the perfect use case—and it is, but with the caveats discussed herein—because backup tools like Veeam can perform deduplication within a backup job, but job-to-job deduplication isn't in the cards. Moving the backup repository to a deduplicating volume would save a ton of space, giving me either space to store more data or more restore points for existing backups.

Unfortunately, I ran into issues with it after running backups for a couple of weeks. Everything would run swimmingly for a while, then suddenly backups would fail with filesystem errors. I'd wipe the backup chain and start again, only to have it happen again. Fed up, I started searching for answers...

Interestingly, the errors I was receiving (The requested operation could not be completed due to a file system limitation.) go all the way back to limitations on NTFS without deduplication, and the early assertions by Microsoft that "defragmentation software isn't needed with NTFS because it protects itself from fragmentation." Anyone else remember that gem?!? Well, the Diskeeper folks were able to prove that NTFS volumes do, in fact, become fragmented, and a cottage industry of competing companies popped up to create defrag software. Microsoft finally relented and not only agreed that the problem can exist on NTFS, but they licensed a "lite" version of Diskeeper and included it in every version of Windows since Windows 2000. They also went so far as to add additional API calls to the filesystem and device manager so that defragger software could better operate in a safe manner than "working around" the previous limitations.

I digress...

The errors and the underlying limitation have to do with the way NTFS handles file fragmentation. It has special hooks to readily locate multiple fragments across the disk (which is, in part, why Microsoft argued that a fragmented NTFS volume wouldn't suffer the same sort of performance penalty that an equivalently-fragmented FAT volume would experience), but the data structures to hold that information is a fixed resource. Once volume fragmentation reaches a certain level, the data structures are exhausted and I/O for the affected file is doomed. The fix? Run a defragger on the volume to free up those data structures (every fragment consumes essentially one entry in the table, so the fewer fragments that exist, the fewer table resources are consumed, irrespective of total file size) and things start working again.

Enter NTFS deduplication

Remember that previous description of how the dedupe engine will take duplicate blocks from the volume—whether they're within a single file or across multiple—and put it in the System Volume Information folder, then leave a pointer in the main MFT to let multiple files (or the same file) access to that block?

Well, we just deliberately engineered a metric crapton (yes, that's a technical description) of intentional fragmentation on the volume. So when individual deduplicated files grow beyond a certain size (personal evidence says it's ~200GB, but posts I've found here and there say it's as little as 100GB while MS says it's 500GB https://support.microsoft.com/en-us/kb/2891967) you can't do anything with the file. Worse, defrag tools can't fix it, because this fragmentation isn't something that the algorithms can "grab"; the only real fix—other than throwing away the files and starting over—is to disable dedupe. And if you're near the edge of capacity due to the benefit of dedupe, even that's no option: rehydrating the file will blow past your capacity. Lose-lose.

Luckily, Microsoft identified the issue and gave us a tool when building volumes intended for deduplication: "large files" flag in the format command. Unfortunately, as you might guess when referring to "format," it's destructive. The structures that are laid down on the physical media when formatting a volume are immutable in this case; only an evacuation and reformat fixes the problem.

Given that restriction, wouldn't it be helpful to know if your existing volumes support large files (ie extreme fragmentation) before you enable deduplication? Sure it would!

The filesystem command "fsutil" is your friend. From an administrative command prompt, run the following command + arguments (this is an informational argument that makes no changes to the volume, but requires administrative access to read the system information):

fsutil fsinfo ntfsinfo <drive letter>



Notice the Bytes Per FileRecord Segment value? On a volume that does not support high levels of fragmentation, you'll see the default value of 1024. You'll want to reformat that volume with the "/L" argument before enabling dedupe for big backup files on that bad boy. And no, the ability to do that format argument is not available in the GUI when creating a new volume; you've got to use the command line.

What does it look like after you've reformatted it? Here you go:


The Bytes Per FileRecord Segment value jumps up to the new value of 4096.

You'll still want to adhere to Microsoft's dedupe best practices (https://msdn.microsoft.com/en-us/library/windows/desktop/hh769303(v=vs.85).aspx), and if you're reformatting it anyway, by all means make sure you do it with the 64K cluster size so you don't run into any brick walls if you expect to expand the volume in the future. Note that the fsutil command also shows the volume's cluster size (Bytes per Cluster) if you're wanting to check that, too.

Special thanks to fellow vExpert Frank Buechsel, who introduced me to using fsutil for this enquiry.

Saturday, December 19, 2015

Veeam 9 and StoreOnce Catalyst

HPE has offered their StoreOnce deduplication platform as a free, 1TB virtual appliance for some time (the appliance is also available for licensed 5TB and 10TB variants). As a competitor for other dedupe backup targets, it offers similar protocols and features: virtual tape library, SMB (although they persist in calling it CIFS), NFS...and a proprietary protocol branded as Catalyst.
StoreOnce protocols
Catalyst is part of a unified protocol from HPE that ties together several different platforms, allowing "dedupe once, replicate anywhere" functionality. Like competing protocols, Catalyst also provides some performance improvements for both reads and writes as compared to "vanilla" file protocols.

Veeam has supported the StoreOnce platform since v8, but only through SMB (err... CIFS?) protocol. With the immanent release of Veeam 9—with support for Catalyst—I decided to give the free product a try and see how it works with v8, v9, and what the upgrade/migration process looks like.

HPE offers the StoreOnce VSA in several variants (ESXi stand-alone, vCenter-managed and Hyper-V) and is very easy to deploy, configure and use through its integrated browser-based admin tool. Adding a storage pool is as simple as attaching a 1TB virtual disk to the VM (ideally, on a secondary HBA) before initialization.

Creating SMB shares is trivial, but if the appliance is configured to use Active Directory authentication, share access must be configured through the Windows Server Manager MMC snap-in; while functional, it's about as cumbersome as one might think. StoreOnce owners would be well-served if HPE added permission/access functionality into the administrative console. Using local authentication eliminates this annoyance, and is possibly the better answer for a dedicated backup appliance...but I digress.

StoreOnce fileshare configuration
Irrespective of the authentication method configured on the appliance, local authentication is the only option for Catalyst stores, which are also trivial to create & configure. In practice, the data stored in a Catalyst store is not visible or accessible via file or VTL protocols—and vice-versa; at least one competing platform of which I'm familiar doesn't have this restriction. This functional distinction does make it more difficult to migrate stored data from one protocol to another; among other possible scenarios, this is particularly germane when an existing StoreOnce+Veeam user wishes to upgrade from v8 to v9 (presuming StoreOnce is also running a firmware version that is supported for Veeam's Catalyst integration) and has a significant amount of data in the file share "side" of the StoreOnce. A secondary effect is that there is no way to utilize the Catalyst store without a Catalyst-compatible software product: in my case, ingest is only possible using Veeam, whether it's one of the backup job functions or the in-console file manager.

Veeam 9 file manager
As of this writing, I have no process for performing the data migration from File to Catalyst without first transferring the data to an external storage platform that can be natively managed by Veeam's "Files" console. Anyone upgrading from Veeam 8 to Veeam 9 will see the existing "native" StoreOnce repositories converted to SMB repositories; as a side effect, file-level management of the StoreOnce share is lost. Any new Catalyst stores can be managed through the Veeam console, but the loss of file-management for the "share side" means there is no direct transfer possible. Data must be moved twice in order migrate from File to Catalyst; competing platforms that provide simultaneous access via file & "proprietary" protocols allow migration through simple repository rescans.

Administrative negatives aside, the StoreOnce platform does a nice job of optimizing storage use with good dedupe ratios. Prior to implementing StoreOnce (with Veeam 8, so only SMB access), I was using Veeam-native compression & deduplication on a Linux-based NAS device. With no other changes to the backup files, migrating them from the non-dedupe NAS to StoreOnce resulted in an immediate 2x deduplication ratio; modifying the Veeam jobs to dedupe appliance-aware settings (eg, no compression at storage) saw additional gains in dedupe efficiency. After upgrading to Veeam 9 (as a member of a partner organization, I have early to the RTM build)—and going through the time-consuming process of migrating the folders from File to Catalyst—my current status is approaching 5x, giving me the feeling that dedupe performance may be superior on the Catalyst stores as compared to File shares. As far as I'm concerned, this is already pretty impressive dedupe performance (given that the majority of the job files are still using sub-optimal settings) and I'm looking forward to increasing performance as the job files cycle from the old settings to dedupe appliance-optimized as retention points are aged out.

Appliance performance during simultaneous read, write operations
StoreOnce appliance performance will be variable, based not only on the configuration of the VM (vCPU, memory) but also on the performance of the underlying storage platform; users of existing StoreOnce physical appliances will have a fixed level of performance based on the platform/model. Users of the virtual StoreOnce appliance can inject additional performance into the system by upgrading the underlying storage (not to mention more CPU or memory, as dictated by the capacity of the appliance) to a higher performance tier.

Note: Veeam's deduplication appliance support—which is required for Catalyst—is only available with Enterprise (or Enterprise Plus) licensing. The 60-day trial license includes all Enterprise Plus features and can be used in conjunction with the free 1TB StoreOnce appliance license to evaluate this functionality in your environment, whether you are a current Veeam licensee or not.

Update

With the official release of Veeam B&R v9, Catalyst and StoreOnce are now available to those of you holding the Enterprise B&R licenses. I will caution you, however, to use a different method of converting from shares to Catalyst than I used. Moving the files does work, but it's not a good solution: you don't get to take advantage of the per-VM backup files that is a feature of v9 (if a backup starts with a monolithic file, it will continue to use it; only creating a new backup—or completely deleting the existing files—will allow per-VM files to be created. This is the preferred format for Catalyst, and the dedupe engine will work more efficiently with per-VM files than it will with monolithic files; I'm sure there's a technical reason for it, but I can vouch for it in practice. Prior to switching to per-VM files, my entire backup footprint, even after cycling through the monolithic files to eliminate dedupe-unfriendly elements like job-file compression, consumed over 1TB of raw storage with a dedupe ratio that never actually reached 5:1. After discarding all those jobs and starting fresh with cloned jobs and per-VM files, I now have all of my backups & restore points on a single 1TB appliance with room to spare and a dedupe ratio currently above 5:1.


I'm still fine-tuning, but I'm very pleased with the solution.

Monday, November 23, 2015

Long-term self-signed certs

While I'm a big proponent of using an enterprise-class certificate authority—either based on internal offline root/online issuing or public CAs—there are some instances when using a self-signed cert fits the bill. Unfortunately, most of the tools for creating a self-signed cert have defaults that result in less-than-stellar results: the digest algorithm is sha1, the cert is likely to have a 1024-bit key, and the extensions that define the cert for server and/or client authentication are missing.

With a ton of references discoverable on The Interwebz, I spent a couple of hours trying to figure out how to generate a self-signed with the following characteristics:

  • 2048-bit key
  • sha256 digest
  • 10-year certificate life (because, duh, I don't want to do this every year)
  • Accepted Use: server auth, client auth
It took pulling pieces from several different resources, documented herein:

Required Software

OpenSSL (command-line software)
Text editor (to create the config file for the cert)

Steps

  1. Create a text file that specifies the "innards" of the cert:
    [req]
    default_bits = 2048
    encrypt_key = no
    distinguished_name = req_dn
    prompt = no

    [ req_dn ]
    CN={replace with server fqdn}
    OU={replace with department}
    O={replace with company name}
    L={replace with city name}
    ST={replace with state name}
    C={replace with 2-letter country code}

    [ exts ]
    extendedKeyUsage = serverAuth,clientAuth
  2. Run the following openssl command (all one line) to create the new private key & certificate:
    openssl req -x509 -config {replace with name of config file created above} -extensions "exts" -sha256 -nodes -days 3652 -newkey rsa:2048 -keyout host.rsa -out host.cer
  3. Run the following openssl command to bundle the key & cert together in a bundle that can be imported into Windows:
    openssl pkcs12 -export -out host.pfx -inkey host.rsa -in host.cer

What's happening

The text file sets up a number of configuration items that you'd either be unable to specify at all (the extensions) or would have to manually input during creation (the distinguished name details).

The request in the second step creates a 2048-bit private key (host.rsa) and a self-signed certificate (host.cer) with a 10-year lifetime (3652 days) with the necessary usage flags and SHA256 digest.

Friday, June 5, 2015

Resurrecting a TomTom XL

I'm a longtime fan of TomTom GPS devices, and thanks to my friends over at w00t, I've bought quite a few over the last score years, gifting some and reselling others.

While my most reliable mapping/routing service (recently) has been Waze on my iPhone, I've had an older TomTom XL·S 310/340 that I've kept in the company car, because sometimes Waze isn't always available or accurate—more because of Verizon CDMA limitations than anything else, but that's a different story—and having a dedicated device is super convenient.

I've been doing a bunch of travel in that company car, and the out-of-date map on the TomTom has become a bit of an annoyance, so unlike the XL I have for the personal car with lifetime map updates, I had a conundrum: do I purchase a new map ($45), subscribe to a year of updates ($49), punt and live with just the iPhone, or purchase a new device for home and move the one with lifetime maps to the company car and let the XL·S go to the electronics graveyard?

Because the device had been working flawlessly otherwise—with the exception of essentially zero battery life—I went ahead and selected the Map Update service.

After attaching the device to my PC and downloading several updates to the TomTom Home management application, the purchased map update was immediately available as an installable option. This old unit only had 2GB of local storage, so the old map had to be deleted before installing the new update; I bravely went ahead with the update process.

And after a goodly while, received errors that Home was unable to copy a file to the device, so it aborted the process. The management app itself suggested disconnecting, reconnecting and retrying the update, so I did that.

A common sight: errors writing to internal storage
Unfortunately, repeating the process didn't help: it might error out at a different file, but over and over, it would still fail.

As it happens, however, when the TomTom is attached to the PC, it shows up as a removable USB drive. When interacting with the Home application, it can create backup copies of the filesystem on the PC, and by comparing the data on the properly-updating home XL, I was able to make some assumptions about the XL·S filesystem. Instead of relying on the Home application to properly transfer the map to the device, I let Windows do it, copying the map data from the downloaded ZIP file to the removable device that was the TomTom's internal storage.

One problem: I was missing a file from the map download.

TomTom uses DRM to keep non-subscribers from using their maps. I was fine with that: as a subscriber, I should have rights to use those maps. However, some searching on the interwebz didn't net me any solutions. Luckily, I also thought to look on my PC where Home was running; there was a second download that had an "activation.zip" file. Inspecting it, I found a .dct file; a quick google search informed me that this was my DRM key.

By putting the map and the DRM key on the TomTom manually, I now had a map that was usable by the device.

Or did I?

While I knew I could operate the device and use the map via the Home management app, the device refused to boot independently. Again, I used my google-fu and discovered that I should be able to wipe the local storage and get Home to reinstall the boot image and application software. And after wiping, but prior to doing the install, I performed Windows filesystem checks to make sure the TomTom local storage was functional and free of errors.

The Home tool worked as documented, but once again, after trying to add the map update, copy/install errors became my bane. I tried again to use Windows to copy the map update and DRM file, and lo... success! Not only would the device operate with the Home app, but it worked when independently powered.

So that's the trick:

  1. Wipe the TomTom local storage. Completely.
  2. Let Home reinstall the boot image and mapping application. This could require several restarts of the device, including hard resets (press and hold the power button until the TomTom logo appears and the drum sound is played).
  3. Extract the PC-based map to the TomTom local storage.
  4. Extract the .dct file to the map folder on the TomTom local storage.
  5. Restart the TomTom.
Update:
The device was working perfectly, so I continued with adding the MapShare corrections, and as the image above shows, I ran into another file transfer error. Following this error, the device refused to restart properly, getting stuck at the indemnity acknowledgement screen and spontaneously restarting. I reconnected the device and removed the most recent files from the map folder—the ones that didn't match the files received in the map update or the DRM file—and restarted the device, and it recovered nicely.

Update 2:
Before anyone asks: the .dct file that's the DRM key is specifically created by TomTom for my use on this device alone and is unusable on any other device, with any other map. The device serial number and map thumbprint are both part of the decryption key for DRM, so even if I didn't care about TomTom's IP rights and the possibility of litigation for it (which I actually do on both accounts), sharing the DRM file with the world wouldn't help anyone. So no, I will not share any of the files I received from TomTom in this update process.

Wednesday, June 3, 2015

Maximum NTFS Volume Expansion

A peer recently had an issue when working on a client system: After adding a second shelf of SAS-attached drives to a physical Windows Storage Server and doubling the available capacity of the environment from ~20TB to ~40TB, he was unable to extend the existing NTFS volume after extending the SAS array group.

The error was "The volume cannot be extended because the number of clusters will exceed the maximum number of clusters supported by the filesystem."
The original volume was reportedly formatted "using the defaults," which under most circumstances would mean it was using 4K clusters. Why wouldn't it allow extending the volume?

Because NTFS (as currently implemented) has a cluster limit of 232-1 clusters per volume.

When you "do the math," that cluster limit does impose some hard limits on the maximum size of the NTFS volume, irrespective of the actual drive space that is available for the volume. And trying to use tricks like dynamic disks and software RAID won't help: those tricks modify the underlying disk structure, not the NTFS filesystem that "rides" on top of it.

Max NTFS Volume by Cluster Size
cluster
size (B)
Bytes KB MB GB TB
512 2,199,023,255,040 2,147,483,648 2,097,152 2,048 2
1024 4,398,046,510,080 4,294,967,295 4,194,304 4,096 4
2048 8,796,093,020,160 8,589,934,590 8,388,608 8,192 8
4096 17,592,186,040,320 17,179,869,180 16,777,216 16,384 16
8192 35,184,372,080,640 34,359,738,360 33,554,432 32,768 32
16384 70,368,744,161,280 68,719,476,720 67,108,864 65,536 64
32768 140,737,488,322,560 137,438,953,440 134,217,728 131,072 128
65536 281,474,976,645,120 274,877,906,880 268,435,456 262,144 256

We knew that we had a functioning 20TB volume, so we verified my theory that the volume was actually formatted with 8K clusters (the smallest size that would support 20TB) using DISKPART's FILESYSTEM command. Sure enough: 8192 was the cluster size.

We gave the client several options for addressing the issue, including the purchase of software that could "live adjust" the cluster sizing. In the end, the client chose the "migrate->reformat->migrate" option, and while it took a long time to perform (20TB is a lot of data!), it was successful.

Tuesday, April 7, 2015

Don't say "Customer"

customer
one that purchases a commodity or service
According to the above definition from Webster's, it's quite likely that you deal with people that can be labelled with that term. Even those of you who are not in specific sales roles may have used the term to refer to those you serve (eg, "the internal customer").

Good or bad, that term has a certain "transactional" connotation to it; the retail model is pretty clear: a person goes to a store, buys a product or receives a service, then leaves. You don't have a relationship with the clerk running the point-of-sale system; you get your stuff and go. Transactional.

For gasoline purchases and groceries, this may be the right model and the right term. But is that the right model for you in IT? Consider it instead from the reverse point of view:

What is your relationship with your barber/hair stylist (Some of you reading this might not use one: your tonsorial needs may be non-existent or you may be able to handle things for yourself. But I bet you can probably remember a time when it was a regular requirement...)? Do you have a certain place to which you always return? When you go there, is there a particular person to whom you look (or schedule or wait) because you get a consistently good cut, or because the conversation is more pleasant, or some other (in)tangible benefit? Do you like the personal service that comes with being known by your first name? Would you have a hard time switching to a different barber/stylist because of the trust you've given to your current one? That is the sort of relationship you should seek to have with your...clients.
client
  1. one that is under the protection of another : dependent
  2. a: a person who engages the professional advice or services of another
    b: customer
While a client can be a form of customer, the superior definitions imply a more intimate relationship between the two parties. Dependency (used in the primary definition) can have both negative and positive connotations, but in this context, we're essentially talking about repeat business. This is what we're after, both as provider and consumer: as a provider, it keeps me in business and employed; as a consumer, I can either add the process of determining "from whom" as the same time I'm trying to figure out the "what" for my need. As a client, you put a certain level of trust into the relationship: you trust that your provider will have your interests at heart; that you won't be taken advantage of; that you can rely on the quality of the work.

That, then, pushes a certain level of responsibility on the provider. Be(come) the trusted adviser by not abusing the trust. Provide good advice. Provide repeatably good service and/or products. Own your mistakes and gently guide your client away from making them on their own. This is how one treats his/her clients—especially if the goal is to keep them!

If you're not already in this frame of mind, I challenge you to make this shift in a simple yet subtle way: Even if you're in the "business of selling widgets," even if you're running a convenience store selling gasoline and snack food, train yourself to stop using the word "customer" and start using the word "client" instead. Words have power; they convey ideas and have implications. Changing the use of that one word should change the way you look at the people you serve; when your outlook changes, the way you act and react in the relationship should follow. All of your clientele may not perceive the difference, either overtly or subconsciously; some still want to be "merely" customers, ignoring the relationship and simply needing a widget or two. Making this adjustment won't "fix" that relationship, but neither should it affect your ability to be there to serve them when they choose you. But the shoppers, the fence-sitters? With this one subtle change, you could influence them in a way that sends them into your care with more frequency.

Disclaimer: I currently work for a value-added reseller—a "VAR" in industry parlance—but have also spent a long time as a purchaser of products and services. I believe this concept is valid in either case.

Sunday, March 8, 2015

Fix vShield Manager after modifying vSphere VDS uplinks

If you've been following my posts about upgrading my home lab, you know that I removed the add-in 1Gbps NICs and consolidated the motherboard-based 1Gbps NICs on one DVS (distributed virtual switch) in order to add 10Gbps support to my hosts. In that process, I not only rearranged the physical NICs for the uplinks, I also updated the uplink names in order to keep my environment self-documenting.

Things pretty much went as planned, but I didn't expect vShield Manager (vSM) to choke on the changes: when updating the uplink names for the DVS that provided the VXLAN port group, I expected vSM to recognize the changes and handle creation of new VXLAN networks without issue. I was wrong.

The first symptom that I had an issue was the inability of vCloud Director (vCD) to create a new Organizational Network on a deployed Edge device:
So: something is off with the teaming policy. Time to look at vSM to determine whether vCD is sending a bad request to vSM, or if vSM itself is the source of the issue. The easiest way to check is to manually create a new network in vSM; if it succeeds, vCD is sending a bad request, otherwise I need to troubleshoot vSM--and possibly vCenter, too.
Boom: the problem is reproduced even for a test directly in vSM. Time to verify the teaming in the base portgroup in vCenter.
Oops. I hadn't updated the portgroup for VXLAN after moving the uplinks around, although I had done so for the other portgroups on the DVS.
Unfortunately, updating the portgroup to use all the available uplinks didn't help. However, in the process, I discovered an unexpected error in vCenter itself:
vSM was making an API call to vCenter that included one of the old uplink names, one which no longer existed on the DVS. To test the theory, I added a couple of additional uplink ports to the DVS and renamed one to match the missing port. It worked, but not as expected:
vSM was able to send a proper API call to vCenter, but the portgroup had sub-optimal uplink settings: of the two active uplinks, only one had an actual, physical uplink associated with it. This was not a redundant connection, even though it looked like it.

Time to restart vSM to get it to re-read the vCenter DVS config, right? Wrong. Even with a restart & re-entering the vCenter credentials, the state persisted.

At this point, my Google-fu failed me: no useful hits on a variety of search terms. Time to hit the VMware Community Forums with a question. Luckily, I received a promising answer in just a day or two.

I learned that one can use the REST API for vSM to reconfigure it, which can get it back in line with reality. But how do you work with arbitrary REST calls? It turns out, there's a REST client plug-in for Firefox, written to troubleshoot and debug REST APIs. It works a treat:
  1. Set up the client for authenticated headers
  2. Retrieve the DVS configuration as an XML blob in the body of a GET call
  3. Modify the XML blob so that it has the correct properties
  4. PUT the revised XML blob back to vSM.
Voila! Everything works.

Specifics:
1) Use an Authenticated GET on the switches API
2) Using the objectId of the desired DVS, get the specific switch data
3) Update the XML blob with the correct uplink names
4) PUT the revised XML blob
As soon as this blob was accepted with a 200 OK response, I re-ran my test in vSM: success! vCD was also able to successfully create the desired portgroup, too.

Key takeaways:
  1. REST Client for Firefox is awesome for arbitrary interaction with a REST API
  2. Sometimes, the only way to accomplish a goal is through the API; a GUI or CLI command may not exist to fix your problem.
  3. This particular fix allows you to arbitrarily rename your uplinks without having to reset the vShield Manager database and completely reinstall it to get VXLAN working again.